Approximation of real numbers with rational number sequences
HTML articles powered by AMS MathViewer
- by Risto Korhonen
- Proc. Amer. Math. Soc. 137 (2009), 107-113
- DOI: https://doi.org/10.1090/S0002-9939-08-09479-3
- Published electronically: August 14, 2008
- PDF | Request permission
Abstract:
Let $\alpha \in \mathbb {R}$, and let $C>\max \{1,\alpha \}$. It is shown that if $\{p_n/q_n\}$ is a sequence formed out of all rational numbers $p/q$ such that \begin{equation*} \left |\alpha -\frac {p}{q} \right | \leq \frac {1}{Cq^2}, \end{equation*} where $p\in \mathbb {Z}$ and $q\in \mathbb {N}$ are relatively prime numbers, then either $\{p_n/q_n\}$ has finitely many elements or \begin{equation*} \limsup _{n\to \infty }\frac {\log \log q_n}{\log n}\geq 1, \end{equation*} where the points $\{q_n\}_{n\in \mathbb {N}}$ are ordered by increasing modulus. This implies that the sequence of denominators $\{q_n\}_{n\in \mathbb {N}}$ grows exponentially as a function of $n$, and so the density of rational numbers which approximate $\alpha$ well in the above sense is relatively low.References
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- E. Bombieri and A. J. van der Poorten, Some quantitative results related to Roth’s theorem, J. Austral. Math. Soc. Ser. A 45 (1988), no. 2, 233–248. MR 951583
- R. G. Halburd, R. Korhonen, and K. Tohge, Cartan’s value distribution theory for Casorati determinants, preprint.
- R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463–478. MR 2248826
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- A. Hinkkanen, A sharp form of Nevanlinna’s second fundamental theorem, Invent. Math. 108 (1992), no. 3, 549–574. MR 1163238, DOI 10.1007/BF02100617
- Pei-Chu Hu and Chung-Chun Yang, Value distribution theory related to number theory, Birkhäuser Verlag, Basel, 2006. MR 2245631
- Serge Lang, The error term in Nevanlinna theory, Duke Math. J. 56 (1988), no. 1, 193–218. MR 932862, DOI 10.1215/S0012-7094-88-05609-8
- J. Liouville, Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques, Journal de Math. Pures et Appl. 16 (1851), 133–142.
- Charles F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory 21 (1985), no. 3, 347–389. MR 814011, DOI 10.1016/0022-314X(85)90061-7
- K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. MR 72182, DOI 10.1112/S0025579300000644
- Min Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1850002, DOI 10.1142/9789812810519
- Carl Siegel, Approximation algebraischer Zahlen, Math. Z. 10 (1921), no. 3-4, 173–213 (German). MR 1544471, DOI 10.1007/BF01211608
- Norbert Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, J. Reine Angew. Math. 368 (1986), 134–141 (German). MR 850619, DOI 10.1515/crll.1986.368.134
- A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284–305.
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Paul Vojta, Roth’s theorem with moving targets, Internat. Math. Res. Notices 3 (1996), 109–114. MR 1383752, DOI 10.1155/S1073792896000104
Bibliographic Information
- Risto Korhonen
- Affiliation: Department of Physics and Mathematics, University of Joensuu, P.O. Box 111, FI-80101 Joensuu, Finland
- Address at time of publication: Department of Mathematics and Statistics, P.O. Box 68, FI-00014, University of Helsinki, Finland
- MR Author ID: 702144
- Email: risto.korhonen@joensuu.fi, risto.korhonen@helsinki.fi
- Received by editor(s): October 22, 2007
- Received by editor(s) in revised form: January 9, 2008
- Published electronically: August 14, 2008
- Additional Notes: The research reported in this paper was supported in part by the Academy of Finland grants #118314 and #210245.
- Communicated by: Ken Ono
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 107-113
- MSC (2000): Primary 11J68; Secondary 11J97
- DOI: https://doi.org/10.1090/S0002-9939-08-09479-3
- MathSciNet review: 2439431