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GEOMETRIC BROWNIAN MOTION WITH DELAY:
MEAN SQUARE CHARACTERISATION

JOHN A. D. APPLEBY, XUERONG MAO, AND MARKUS RIEDLE

(Communicated by Richard C. Bradley)

Abstract. A geometric Brownian motion with delay is the solution of a sto-
chastic differential equation where the drift and diffusion coefficients depend
linearly on the past of the solution, i.e. a linear stochastic functional differential
equation. In this work the asymptotic mean square behaviour of a geometric
Brownian motion with delay is completely characterised by a sufficient and
necessary condition in terms of the drift and diffusion coefficients.

1. Introduction

Geometric Brownian motion is one of the stochastic processes most often used in
applications, not least of all in financial mathematics for modelling the dynamics of
security prices. More recently, however, modelling the price process by a geometric
Brownian motion has been criticised because the past of the volatility is not taken
into account.

The geometric Brownian motion is the strong solution of the stochastic differen-
tial equation

dX(t) = bX(t) dt + σX(t) dW (t) for t � 0,

where b and σ are some real constants. If we wish that the dynamics of the process
X at time t are to depend on its past, a natural generalisation involves replacing
the constants b and σ by some linear functionals on an appropriate function space,
say the space of continuous functions on a bounded interval. Then we are led by
the Riesz representation theorem to the following stochastic differential equation
with delay:

dX(t) =

(∫
[−α,0]

X(t + u)µ(du)

)
dt +

(∫
[−α,0]

X(t + u)ν(du)

)
dW (t)(1)

for all t � 0 and some measures µ, ν. We call the solution X of this stochastic dif-
ferential equation geometric Brownian motion with delay and its asymptotic mean
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square behavior will be characterised in this article. In contrast to the geomet-
ric Brownian motion without delay, no explicit representation of X is known from
which the asymptotic behaviour can be inferred directly.

Equation (1) is a stochastic functional differential equation with diffusion coeffi-
cient depending on the past. Such equations may exhibit most irregular asymptotic
behaviour; see, for example, Mohammed and Scheutzow [8] for the noisy feedback
equation. Nevertheless, for a much more general equation than (1) a wide variety
of sufficient conditions have been established guaranteeing stability in some sense.
An exhaustive list of researchers and papers is not quoted here, but a good se-
lection of such results is collated in Mao [7] and Kolmanovskii and Myshkis [6].
Despite this activity over the last twenty–five years, to the best of our knowledge
no sufficient and necessary conditions are known for stability, even for the linear
equation (1). By contrast, in this work we are able to find necessary and sufficient
conditions which characterise completely the asymptotic behaviour of the solution
in the mean square. An interesting by-product of this stability characterisation
is the observation that a deterministic solution may transpire to be a solution of
the stochastic equation. This feature cannot arise in linear non-delay stochastic
equations.

The proof of our stability characterisation relies on the fact that a non-negative
functional of the process has expected value which satisfies a deterministic linear re-
newal equation. The asymptotic behaviour of this functional is characterised by the
renewal theorem; once this characterisation has been obtained, it is straightforward
to characterise the asymptotic behaviour of the mean square.

2. Preliminaries

We first turn our attention to the deterministic delay equation underlying the
stochastic differential equation (1). For a fixed constant α � 0 we consider the
deterministic linear delay differential equation

ẋ(t) =
∫

[−α,0]

x(t + u) µ(du) for t � 0,

x(t) = ϕ(t) for t ∈ [−α, 0],
(2)

for a measure µ �= 0 in M = M [−α, 0], the space of signed Borel measures on [−α, 0]
with the total variation norm ‖·‖TV . The initial function ϕ is assumed to be in the
space C[−α, 0] := {ψ : [−α, 0] → � : continuous}. A function x : [−α,∞) → �

is called a solution of (2) if x is continuous on [−α,∞), its restriction to [0,∞) is
continuously differentiable, and x satisfies the first and second identity of (2) for
all t � 0 and t ∈ [−α, 0], respectively. It is well known that for every ϕ ∈ C[−α, 0]
the problem (2) admits a unique solution x = x(·, ϕ).

The fundamental solution or resolvent of (2) is the unique locally absolutely
continuous function r : [0,∞) → � which satisfies

r(t) = 1 +
∫ t

0

∫
[max{−α,−s},0]

r(s + u) dµ(u) ds for t � 0.

It plays a role which is analogous to the fundamental system in linear ordinary
differential equations and the Green function in partial differential equations. For-
mally, it is the solution of (2) corresponding to the initial function ϕ = �{0}. For
later convenience we set r(u) = 0 for u ∈ [−α, 0).
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The solution x(·, ϕ) of (2) for an arbitrary initial segment ϕ exists, is unique,
and can be represented as

(3) x(t, ϕ) = ϕ(0)r(t) +
∫

[−α,0]

∫ 0

s

r(t + s − u) ϕ(u) du µ(ds) for t � 0;

cf. Diekmann et al. [3, Chapter I].
The asymptotic behaviour of r and hence of x(·, ϕ) relies on the value of

v0(µ) := sup

{
�(λ) : λ ∈ �, λ −

∫
[−α,0]

eλs µ(ds) = 0

}
,(4)

where �(z) denotes the real part of a complex number z. We summarize some
conditions on the asymptotic behavior of the fundamental solution r in the following
lemma:

Lemma 2.1. For the fundamental solution r the following are equivalent:

(a) v0(µ) < 0;
(b) r(t) → 0 for t → ∞;
(c) r ∈ L1(�+);
(d) r ∈ L2(�+).

Proof. The equivalences of (a), (b) and (c) are established by Theorems 3.3.5 and
3.3.17 in Gripenberg et al. [5]. Obviously, (b) and (c) imply (d). Conversely, the
equation

ṙ(t) =
∫

[−α,0]

r(t + u) µ(du) for t � 0

implies, by Hölder’s inequality, that ṙ is in L2(�+). For f(t) = r2(t) it follows
by Hölder’s inequality that ḟ ∈ L1(�+) and therefore f(t) → 0 for t → ∞ as
f ∈ L1(�+). �

For every γ > v0(µ) we have r(t) = o(exp(γt)) for t → ∞ by [5, Thm. 7.2.1].
Consequently, if r tends to zero the decay is exponentially fast with a rate greater
than v0(µ). By (3) every solution x(·, ϕ) inherits the asymptotic behavior of r; that
is, x(t, ϕ) = O(exp(γt)) for t → ∞ and all γ > v0(µ).

Let us introduce equivalent notation for (2). For a function x : [−α,∞) → � we
define the segment of x at time t � 0 by the function

xt : [−α, 0] → �, xt(u) := x(t + u).

If we equip the space C[−α, 0] of continuous functions with the supremum norm,
then the Riesz representation theorem guarantees that every continuous functional
F : C[−α, 0] → � is of the form

F (ψ) =
∫

[−α,0]

ψ(u) µ(du)

for a measure µ ∈ M . Hence, we will write (2) in the form

ẋ(t) = F (xt) for t � 0, x0 = ϕ

and assume F to be a continuous and linear functional on C[−α, 0].
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Let us fix a complete probability space (Ω,F , P ) with a filtration (F t)t�0 satis-
fying the usual conditions and let (W (t) : t � 0) be a Wiener process on this space.
We study the following stochastic differential equation with time delay:

dX(t) = F (Xt) dt + G(Xt) dW (t) for t � 0,

X(u) = ϕ(u) for u ∈ [−α, 0],
(5)

where F and G are continuous and linear functionals on C[−α, 0] for a constant
α � 0. As before, we can write the functional G in the form

G(ψ) =
∫

[−α,0]

ψ(u) ν(du) for all ψ ∈ C[−α, 0]

and for a measure ν ∈ M . We note that assuming the same domain [−α, 0] for the
arguments of the functionals F and G does not involve any restriction or loss of
generality.

For every ϕ ∈ C[−α, 0] there exists a unique, adapted strong solution (X(t, ϕ) :
t � −α) with finite second moments of (5) (cf., e.g., Mao [7, Thm. 5.2.6]). The
dependence of the solutions on the initial condition ϕ is neglected in our notation
in what follows; that is, we will write x(t) = x(t, ϕ) and X(t) = X(t, ϕ) for the
solutions of (2) and (5) respectively.

By Reiß et al. [9, Lemma 6.1] the solution (X(t) : t � −α) of (5) obeys a
variation of constants formula

X(t) =

{
x(t) +

∫ t

0
r(t − s)G(Xs) dW (s), t � 0,

ϕ(u), u ∈ [−α, 0],
(6)

where r is the fundamental solution of (2). It is to be noted that this equation does
not supply an explicit form of the solution.

3. Stability

The asymptotic behaviour of the solution X relies on the stochastic convolution
integral arising in the variation of constants formula (6). Let us define

Y (t) := G(Xt) for t � 0,(7)

such that the stochastic convolution integral is the convolution of the stochastic
process Y = (Y (t) : t � 0) and the fundamental solution r. The following re-
sult shows that the function t �→ E |Y (t)|2 satisfies a linear convolution integral
equation.

Theorem 3.1. Let (X(t) : t � −α) be the solution of (5). Then we have for all
t � 0,

E |X(t)|2 = |x(t)|2 +
∫ t

0

r2(t − s) E |Y (s)|2 ds,(8)

where Y , defined by (7), obeys for all t � 0:

E |Y (t)|2 = G2(xt) +
∫ t

0

G2(rt−s)E |Y (s)|2 ds.(9)

Proof. The variation of constants formula (6) and Itô’s isometry imply the first
assertion.
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Using again the variation of constants formula we obtain by Fubini’s theorem
for stochastic integrals for t ∈ [0, α]:

E |Y (t)|2 = E |G(Xt)|2

= E

∣∣∣∣∣
∫

[−α,−t)

Xt(u) ν(du) +
∫

[−t,0]

Xt(u) ν(du)

∣∣∣∣∣
2

= E

∣∣∣∣∣
∫

[−α,−t)

ϕ(t + u) ν(du) +
∫

[−t,0]

x(t + u) ν(du)

+
∫

[−t,0]

(∫ t+u

0

r(t + u − s)Y (s) dW (s)
)

ν(du)

∣∣∣∣∣
2

= E

∣∣∣∣∣G(xt) +
∫ t

0

(∫
[s−t,0]

r(t + u − s) ν(du)

)
Y (s) dW (s)

∣∣∣∣∣
2

= |G(xt)|2 +
∫ t

0

G2(rt−s)E |Y (s)|2 ds,

where we used in the last line r(u) = 0 for u < 0. Setting ν([a, b)) = 0 for all
a � b � −α enables us to enlarge the integration domain for G such that we can
write also for t � α:

E |Y (t)|2 = E

∣∣∣∣∣G(xt) +
∫

[−t,0]

(∫ t+u

0

r(t + u − s)Y (s) dW (s)
)

ν(du)

∣∣∣∣∣
2

.

We can proceed as above to verify that equation (9) is also satisfied for t � α. �

We next turn to stating and proving our first stability result. In it, the hy-
pothesis r ∈ L2(�+) is employed. We remark that this assumption is necessary if
E |X(t, ϕ)|2 → 0 as t → ∞ for all solutions X(·, ϕ) for every ϕ ∈ C[−α, 0]. To see
this, note by (8) that E |X(t, ϕ)|2 cannot tend to zero as t → ∞ if x(t, ϕ) does not
tend to zero. But x(t, ϕ) tends to zero for all ϕ ∈ C[−α, 0] if and only if v0(µ) < 0,
which might be seen by the spectral decomposition of C[−α, 0]; see [2, Thm. 7.2.1].

The function s �→ G(rs), which we denote by G(r•), is square integrable if
r ∈ L2(�+) and its norm in L2(�+) is given by

‖G(r•)‖L2(�+) =
(∫ ∞

0

(G(rs))2 ds

)1/2

.

This quantity allows us to characterise the asymptotic behaviour of the solution for
(5):

Theorem 3.2. If the fundamental solution r is in L2(�+), then the solution (X(t) :
t � −α) of (5) obeys the following trichotomy:

(a) If ‖G(r•)‖L2(�+) < 1, then there exists κ > 0 such that

lim
t→∞

eκtE |X(t)|2 = 0.
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(b) If ‖G(r•)‖L2(�+) = 1, then

lim
t→∞

E |X(t)|2 =

(∫ ∞
0

G2(xs) ds
) (∫ ∞

0
r2(s) ds

)
∫ ∞
0

sG2(rs) ds
< ∞.

(c) If ‖G(r•)‖L2(�+) > 1, then there exists κ > 0 such that

lim
t→∞

e−κtE |X(t)|2 =

(∫ ∞
0

e−κsG2(xs) ds
) (∫ ∞

0
e−κsr2(s) ds

)
∫ ∞
0

se−κsG2(rs) ds
< ∞.

Proof. Let us introduce the following functions and measures for t � 0:

y(t) := E |Y (t)|2 , f(t) := G2(xt),

g(t) := G2(rt), ζ(dt) := g(t) dt.

Then we can rewrite (9) as the renewal equation

y(t) = f(t) +
∫ t

0

y(t − s) ζ(ds) for all t � 0,(10)

and the three cases (a) to (c) correspond to whether the renewal equation (10) is
defective, proper or excessive.

Moreover, we introduce the notation h(λ)(t) := eλth(t) for any function h : �+ →
� and ζ(λ)(dt) := eλtζ(dt) for λ ∈ �. The equation (10) can be rewritten as

y(λ)(t) = f(λ)(t) +
∫ t

0

y(λ)(t − s) ζ(λ)(ds) for all t � 0(11)

and all λ ∈ �. We analyse the asymptotic behaviour of y(λ) by the renewal Theo-
rems 3.1.4 and 3.1.5 in Alsmeyer [1]. If ζ(λ)(�+) < 1 and f(λ)(t) → 0 for t → ∞,
we obtain by [1, Thm. 3.1.4] that

lim
t→∞

y(λ)(t) = 0.(12)

In the proper case, that is, ζ(λ)(�+) = 1, it is sufficient for the application of the
renewal theorem that the function f(λ) is in (L1∩L∞)(�+) and satisfies f(λ)(t) → 0
for t → ∞ because the measure ζ is absolutely continuous with respect to the
Lebesgue measure. Then the renewal theorem [1, Thm. 3.1.5] yields

lim
t→∞

y(λ)(t) = (m(ζ(λ)))−1

∫ ∞

0

f(λ)(s) ds,(13)

where m(ζ(λ)) :=
∫
�+

teλtζ(dt).
By Lemma 2.1 and a remark after this lemma we have r(t) = o(exp(−γt)) and

x(t) = o(exp(−γt)) for all γ ∈ (0,−v0(µ)). Now fix such a γ.
Let us first assume in case (a) that ‖G(r•)‖L2(�+) = 0. Then we have G(rs) = 0

for all s � 0, and by (9) we have y(t) = G2(xt) = o(exp(−2γt)), and we can proceed
as below.

In case (a) the assumption 0 < ‖G(r•)‖L2(�+) < 1 yields that there exists ϑ > 0
with

ζ(ϑ)(�+) =
∫ ∞

0

eϑs ζ(ds) = 1.(14)
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In the case ϑ � 2γ we have f(ϑ)(t) → 0 and the renewal theorem (13) implies

lim
t→∞

y(ϑ)(t) = (m(ζ(ϑ)))−1

∫ ∞

0

f(ϑ)(s) ds.

Note that m(ζ(ϑ)) is non-zero because of (14) and the integral term is finite because
of the exponential decay of x.

In the other case 2γ < ϑ we have f(2γ)(t) → 0 and ζ(2γ)(�+) < 1. Therefore,
the renewal theorem (12) yields

lim
t→∞

y(2γ)(t) = 0.

Consequently, we have together in case (a) that y(t) = o(exp(−κt)) for all κ <
(2γ ∧ ϑ), which leads to∫ t

0

r2(s)y(t − s) ds = o(exp(−κt)).

Because equation (8) can be written as

E |X(t)|2 = x2(t) +
∫ t

0

r2(s)y(t − s) ds,(15)

the proof is complete.
In case (b), the renewal theorem (13) guarantees that

lim
t→∞

y(t) = (m(ζ))−1

∫ ∞

0

f(s) ds

with m(ζ) := m(ζ(0)). Note that m(ζ) is finite as r tends to zero exponentially
fast and it is non-zero because

∫ ∞
0

G2(rs) ds = 1. By equation (15) we obtain by
dominated convergence

lim
t→∞

E |X(t)|2 = lim
t→∞

∫ ∞

0

r2(s)�[0,t] y(t − s) ds

=
1

m(ζ)

(∫ ∞

0

f(s) ds

)(∫ ∞

0

r2(s) ds

)
.

In case (c), because ζ is a finite measure, there exists a unique ϑ < 0 in case
(c) such that ζ(ϑ)(�+) =

∫
�+

eϑs ζ(ds) = 1. Furthermore, as before, m(ζ(ϑ)) is
non-zero and finite. The renewal theorem (13) implies

lim
t→∞

y(ϑ)(t) = (m(ζ(ϑ)))−1

∫ ∞

0

eϑsf(s) ds.

Finally, from (8) we have

eϑtE |X(t)|2 = eϑt |x(t)|2 +
∫ t

0

eϑsr2(s)eϑ(t−s)y(t − s) ds,

and so, because of the exponential decay of r, we conclude

lim
t→∞

eϑtE |X(t)|2 =
1

m(ζϑ)

(∫ ∞

0

eϑsf(s) ds

)(∫ ∞

0

eϑsr2(s) ds

)
. �

Note that in the proof we give an upper bound for the decay rate κ in case (a)
of Theorem 3.2.

Alsmeyer [1] contains a treatment of the renewal equation which covers equations
with measures. Similar results may be found in Feller [4].
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As a corollary of Theorem 3.2 we obtain an equivalence between the asymptotic
behaviour of the mean square of the solution X and a condition on the fundamental
solution r and the diffusion coefficient G. Naturally, this requires that the solution
X does not reduce to the solution of the deterministic equation (2), for in this case
X would not provide any information on the diffusion coefficient. We argue below
that this situation may occur and must be excluded in the next corollary. This will
also be illustrated presently in an example.

Corollary 3.3. Let the fundamental solution r be in L2(�+) and assume that no
version of the solution X = X(·, ϕ) of (5) coincides with the deterministic solution
x = x(·, ϕ) of (2). Then we have the following:

lim
t→∞

E |X(t)|2 =

⎧⎪⎨
⎪⎩

0 ⇐⇒ ‖G(r•)‖L2(�+) < 1,

c > 0 ⇐⇒ ‖G(r•)‖L2(�+) = 1,

∞ ⇐⇒ ‖G(r•)‖L2(�+) > 1.

Proof. We have to show that the constants in Theorem 3.2 in (b) and (c) describing
the limiting behavior of X are non-zero, which is equivalent to∫ ∞

0

G2(xs(·, ϕ)) ds �= 0.(16)

Because s �→ xs(·, ϕ) and G are continuous operators, equation (16) does not hold
if and only if G(xt(·, ϕ)) = 0 for all t � 0. In this case x(·, ϕ) would also be a
solution of the stochastic equation (5), which contradicts our assumption because
of the uniqueness of the solution of (5). �

Remark 3.4. If the solution x(·, ϕ) of the deterministic equation (2) also solves the
stochastic equation (5), then it follows by taking expectation and Itô’s isometry
that

G(xt(·, ϕ)) = 0 for all t � 0.(17)

Conversely, condition (17) implies that a version of the solution X(·, ϕ) of (5)
coincides with x(·, ϕ).

Thus, a sufficient condition for the trichotomy only relying on the initial condi-
tion ϕ is G(ϕ) �= 0.

A more abstract point of view shows that equation (17) holds true if a generalized
eigenspace N of the deterministic equation (2) is a subset of the kernel ker(G) of
the diffusion coefficient G. Then, for every ϕ ∈ N the segment xt(·, ϕ) is in N and
consequently in ker(G), so that (17) is satisfied. For details on eigenspaces and
related results for equation (2), we refer the reader to Diekmann et al. [3] and Hale
and Lunel [2]. A concrete example is given below.

We emphasise that the foregoing situation in which a deterministic solution may
solve a non-trivial linear stochastic differential equation is a very specific feature
of stochastic functional differential equations and cannot occur in linear stochastic
ordinary differential equations.

Example 3.5. Let us consider the solution (X(t) : t � 0) of the simple equation

dX(t) = bX(t) dt + (cX(t) + dX(t − α)) dW (t) for t � 0,(18)
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with b < 0, c, d ∈ � and α > 0. For the condition in Theorem 3.2, as r(t) = 0 for
t < 0, we calculate

‖G(r•)‖2
L2(�+) =

∫ ∞

0

G2(rs) ds

= c2

∫ ∞

0

r2(s) ds + d2

∫ ∞

α

r2(s − α) ds + 2cd

∫ ∞

α

r(s)r(s− α) ds

=
1

−2b
(c2 + d2 + 2cdebα).

By using results on deterministic linear difference equations we obtain for a contin-
uous function y : [−α,∞) → �:

G(yt) = 0 for all t � 0 ⇐⇒ cy(t) + dy(t − α) = 0 for all t � 0

⇐⇒ y(t) = y(0)eγt for all t � −α and cd < 0

with γ := 1
α ln −d

c . In the case when b �= γ and cd < 0, we obtain that for every
initial condition ϕ the solution X = X(·, ϕ) obeys

lim
t→∞

E |X(t)|2 = 0 ⇐⇒ c2 + d2 + 2cdebα < −2b.(19)

In the case when b < 0 and cd � 0, the equivalence (19) also holds.
In the non-delay case d = 0 the solution X is the geometric Brownian motion

and (19) reproduces the well-known and easily calculated fact that E |X(t)|2 → 0 if
and only if c2 < −2b. In the pure delay case c = 0 and d �= 0 we find that d2 < −2b
is necessary and sufficient to guarantee E |X(t)|2 → 0. However, although the
condition on the noise intensities is the same as for geometric Brownian motion,
the rate of decay to zero is different.

If c �= 0 and d �= 0, then the dependence of the stability region on the drift
coefficient b is described by b < b0 < 0 where b0 is the largest real root of

c2 + d2 + 2cdeb0α + 2b0 = 0.

In particular, we observe that while the stability region for (18) is symmetric in c
and d, it is not symmetric in the sign of cd.

We finish by pointing out that equation (18) provides an example of the situation
already mentioned in Remark 3.4 in which a solution of the deterministic equation
(2) is also a solution of the stochastic equation (5). To see this take, for example,
c = −e, d = 1 and b = γ for some α � 1. Then, for ϕ(u) = eγu, u ∈ [−α, 0], the
solution x(t, ϕ) = eγt, t � 0, satisfies G(xt(·, ϕ)) = 0 for all t � 0. Thus, x(·, ϕ) is
also a solution of the stochastic equation and x(t, ϕ) → 0 for t → ∞ even though
‖G(r•)‖2

L2(�+) = α
2 (e2 − 1) > 1.
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