On a product of modified Bessel functions
HTML articles powered by AMS MathViewer
- by Árpád Baricz
- Proc. Amer. Math. Soc. 137 (2009), 189-193
- DOI: https://doi.org/10.1090/S0002-9939-08-09571-3
- Published electronically: August 1, 2008
- PDF | Request permission
Abstract:
Let $I_{\nu }$ and $K_{\nu }$ denote the modified Bessel functions of the first and second kinds of order $\nu .$ In this note we prove that the monotonicity of $u\mapsto I_{\nu }(u)K_{\nu }(u)$ on $(0,\infty )$ for all $\nu \geq -1/2$ is an almost immediate consequence of the corresponding Turán type inequalities for the modified Bessel functions of the first and second kinds of order $\nu .$ Moreover, we show that the function $u\mapsto I_{\nu }(u)K_{\nu }(u)$ is strictly completely monotonic on $(0,\infty )$ for all $\nu \in [-1/2,1/2].$ At the end of this note, a conjecture is stated.References
- D. E. Amos, Computation of modified Bessel functions and their ratios, Math. Comp. 28 (1974), 239–251. MR 333287, DOI 10.1090/S0025-5718-1974-0333287-7
- Árpád Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z. 256 (2007), no. 4, 895–911. MR 2308896, DOI 10.1007/s00209-007-0111-x
- Baricz, Á., 2008, Turán type inequalities for hypergeometric functions. Proceedings of the American Mathematical Society, 136(9), 3223–3229.
- Baricz, Á., 2008, Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expositiones Mathematicae, 26(3), 279–293.
- Baricz, Á., Turán type inequalities for some probability density functions. Studia Scientiarium Mathematicarum Hungarica (submitted).
- T. H. Gronwall, An inequality for the Bessel functions of the first kind with imaginary argument, Ann. of Math. (2) 33 (1932), no. 2, 275–278. MR 1503051, DOI 10.2307/1968329
- Mourad E. H. Ismail and Martin E. Muldoon, Monotonicity of the zeros of a cross-product of Bessel functions, SIAM J. Math. Anal. 9 (1978), no. 4, 759–767. MR 486686, DOI 10.1137/0509055
- C. M. Joshi and S. K. Bissu, Some inequalities of Bessel and modified Bessel functions, J. Austral. Math. Soc. Ser. A 50 (1991), no. 2, 333–342. MR 1094928
- A. Laforgia and P. Natalini, On some Turán-type inequalities, J. Inequal. Appl. , posted on (2006), Art. ID 29828, 6. MR 2221215, DOI 10.1155/JIA/2006/29828
- Lee Lorch, Monotonicity of the zeros of a cross product of Bessel functions, Methods Appl. Anal. 1 (1994), no. 1, 75–80. MR 1260384, DOI 10.4310/MAA.1994.v1.n1.a6
- K. S. Miller and S. G. Samko, Completely monotonic functions, Integral Transform. Spec. Funct. 12 (2001), no. 4, 389–402. MR 1872377, DOI 10.1080/10652460108819360
- Ingemar Nȧsell, Rational bounds for ratios of modified Bessel functions, SIAM J. Math. Anal. 9 (1978), no. 1, 1–11. MR 466662, DOI 10.1137/0509001
- Robert Penfold, Jean-Marc Vanden-Broeck, and Scott Grandison, Monotonicity of some modified Bessel function products, Integral Transforms Spec. Funct. 18 (2007), no. 1-2, 139–144. MR 2290352, DOI 10.1080/10652460601041219
- R. S. Phillips and Henry Malin, Bessel function approximations, Amer. J. Math. 72 (1950), 407–418. MR 35346, DOI 10.2307/2372042
- V. R. Thiruvenkatachar and T. S. Nanjundiah, Inequalities concerning Bessel functions and orthogonal polynomials, Proc. Indian Acad. Sci., Sect. A. 33 (1951), 373–384. MR 0048635
Bibliographic Information
- Árpád Baricz
- Affiliation: Faculty of Economics, Babeş-Bolyai University, RO-400591 Cluj-Napoca, Romania
- MR Author ID: 729952
- Email: bariczocsi@yahoo.com
- Received by editor(s): December 13, 2007
- Published electronically: August 1, 2008
- Additional Notes: This research was partially supported by the Institute of Mathematics, University of Debrecen, Hungary
- Communicated by: Carmen C. Chicone
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 189-193
- MSC (2000): Primary 33C10, 33C15
- DOI: https://doi.org/10.1090/S0002-9939-08-09571-3
- MathSciNet review: 2439440
Dedicated: Dedicated to my son Koppány