On universal $C^*$-algebras generated by $n$ projections with scalar sum
HTML articles powered by AMS MathViewer
- by Tatiana Shulman
- Proc. Amer. Math. Soc. 137 (2009), 115-122
- DOI: https://doi.org/10.1090/S0002-9939-08-09654-8
- Published electronically: August 14, 2008
- PDF | Request permission
Abstract:
We study the universal $C^*$-algebras generated by $n$ projections $p_1,\dotsc ,p_n$ subject to the relation $p_1+\cdots +p_n=\lambda 1$, $\lambda \in \mathbb {R}$. The questions of when these $C^*$-algebras are type I, nuclear or exact are considered. It is proved also that among these $C^*$-algebras there is a continuum of mutually nonisomorphic ones.References
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5
- Eberhard Kirchberg, On restricted perturbations in inverse images and a description of normalizer algebras in $C^*$-algebras, J. Funct. Anal. 129 (1995), no. 1, 1–34. MR 1322640, DOI 10.1006/jfan.1995.1040
- Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, DOI 10.1515/crll.2000.065
- S. A. Kruglyak, Coxeter functors for a class of $\ast$-quivers, Ukraïn. Mat. Zh. 54 (2002), no. 6, 789–797 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 54 (2002), no. 6, 967–978. MR 1956637, DOI 10.1023/A:1021764304170
- S. A. Kruglyak, V. I. Rabanovich, and Yu. S. Samoĭlenko, On sums of projections, Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 36 (2002), no. 3, 182–195. MR 1935900, DOI 10.1023/A:1020193804109
- Stanislav Kruglyak, Vyacheslav Rabanovich, and Yuriĭ Samoĭlenko, Decomposition of a scalar matrix into a sum of orthogonal projections, Linear Algebra Appl. 370 (2003), 217–225. MR 1994329, DOI 10.1016/S0024-3795(03)00390-2
- S. A. Kruglyak and A. V. Roĭter, Locally scalar representations of graphs in the category of Hilbert spaces, Funktsional. Anal. i Prilozhen. 39 (2005), no. 2, 13–30, 94 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 39 (2005), no. 2, 91–105. MR 2161513, DOI 10.1007/s10688-005-0022-8
- S. A. Krugljak and Ju. S. Samoĭlenko, Unitary equivalence of sets of selfadjoint operators, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 60–62 (Russian). MR 565103
- Stanislav Krugliak and Yuriǐ Samoǐlenko, On complexity of description of representations of $\ast$-algebras generated by idempotents, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1655–1664. MR 1636978, DOI 10.1090/S0002-9939-00-05100-5
- Terry A. Loring, Lifting solutions to perturbing problems in $C^*$-algebras, Fields Institute Monographs, vol. 8, American Mathematical Society, Providence, RI, 1997. MR 1420863, DOI 10.1090/fim/008
- V. Ostrovskyi and Yu. Samoilenko, Introduction to the theory of representations of finitely presented *-algebras. I. Representations by bounded operators, Reviews in Mathematics and Mathematical Physics, vol. 11, Harwood Academic Publishers, Amsterdam, 1999. MR 1997101
- V. I. Rabanovich and Yu. S. Samoĭlenko, When the sum of idempotents or projectors is a multiple of unity, Funktsional. Anal. i Prilozhen. 34 (2000), no. 4, 91–93 (Russian); English transl., Funct. Anal. Appl. 34 (2000), no. 4, 311–313. MR 1819651, DOI 10.1023/A:1004173827361
- Simon Wassermann, Tensor products of free-group $C^*$-algebras, Bull. London Math. Soc. 22 (1990), no. 4, 375–380. MR 1058315, DOI 10.1112/blms/22.4.375
Bibliographic Information
- Tatiana Shulman
- Affiliation: Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824
- MR Author ID: 684365
- Email: tatiana_shulman@yahoo.com
- Received by editor(s): July 19, 2007
- Published electronically: August 14, 2008
- Communicated by: Marius Junge
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 115-122
- MSC (2000): Primary 46L05; Secondary 46L35
- DOI: https://doi.org/10.1090/S0002-9939-08-09654-8
- MathSciNet review: 2439432