## Vertex cover algebras of unimodular hypergraphs

HTML articles powered by AMS MathViewer

- by Jürgen Herzog, Takayuki Hibi and Ngô Viêt Trung PDF
- Proc. Amer. Math. Soc.
**137**(2009), 409-414 Request permission

## Abstract:

It is proved that all vertex cover algebras of a hypergraph are standard graded if and only if the hypergraph is unimodular. This has interesting consequences on the symbolic powers of monomial ideals.## References

- Claude Berge,
*Hypergraphs*, North-Holland Mathematical Library, vol. 45, North-Holland Publishing Co., Amsterdam, 1989. Combinatorics of finite sets; Translated from the French. MR**1013569** - Cesar A. Escobar, Rafael H. Villarreal, and Yuji Yoshino,
*Torsion freeness and normality of blowup rings of monomial ideals*, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 69–84. MR**2184791**, DOI 10.1201/9781420028324.ch7 - Isidoro Gitler, Carlos E. Valencia, and Rafael H. Villarreal,
*A note on Rees algebras and the MFMC property*, Beiträge Algebra Geom.**48**(2007), no. 1, 141–150. MR**2326406** - Jürgen Herzog, Takayuki Hibi, and Ngô Viêt Trung,
*Symbolic powers of monomial ideals and vertex cover algebras*, Adv. Math.**210**(2007), no. 1, 304–322. MR**2298826**, DOI 10.1016/j.aim.2006.06.007 - J. Herzog, T. Hibi, N.V. Trung and X. Zheng, Standard graded vertex cover algebras, cycles and leaves, Trans. Amer. Math. Soc. 360 (2008), No. 12, 6231-6249.
- Alexander Schrijver,
*Theory of linear and integer programming*, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR**874114**

## Additional Information

**Jürgen Herzog**- Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
- MR Author ID: 189999
- Email: juergen.herzog@uni-essen.de
**Takayuki Hibi**- Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 219759
- Email: hibi@math.sci.osaka-u.ac.jp
**Ngô Viêt Trung**- Affiliation: Institute of Mathematics, Vien Toan Hoc, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@math.ac.vn
- Received by editor(s): March 18, 2007
- Published electronically: October 9, 2008
- Communicated by: Bernd Ulrich
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**137**(2009), 409-414 - MSC (2000): Primary 13D02, 05C65
- DOI: https://doi.org/10.1090/S0002-9939-08-09308-8
- MathSciNet review: 2448558