Vertex cover algebras of unimodular hypergraphs
HTML articles powered by AMS MathViewer
- by Jürgen Herzog, Takayuki Hibi and Ngô Viêt Trung
- Proc. Amer. Math. Soc. 137 (2009), 409-414
- DOI: https://doi.org/10.1090/S0002-9939-08-09308-8
- Published electronically: October 9, 2008
- PDF | Request permission
Abstract:
It is proved that all vertex cover algebras of a hypergraph are standard graded if and only if the hypergraph is unimodular. This has interesting consequences on the symbolic powers of monomial ideals.References
- Claude Berge, Hypergraphs, North-Holland Mathematical Library, vol. 45, North-Holland Publishing Co., Amsterdam, 1989. Combinatorics of finite sets; Translated from the French. MR 1013569
- Cesar A. Escobar, Rafael H. Villarreal, and Yuji Yoshino, Torsion freeness and normality of blowup rings of monomial ideals, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 69–84. MR 2184791, DOI 10.1201/9781420028324.ch7
- Isidoro Gitler, Carlos E. Valencia, and Rafael H. Villarreal, A note on Rees algebras and the MFMC property, Beiträge Algebra Geom. 48 (2007), no. 1, 141–150. MR 2326406
- Jürgen Herzog, Takayuki Hibi, and Ngô Viêt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), no. 1, 304–322. MR 2298826, DOI 10.1016/j.aim.2006.06.007
- J. Herzog, T. Hibi, N.V. Trung and X. Zheng, Standard graded vertex cover algebras, cycles and leaves, Trans. Amer. Math. Soc. 360 (2008), No. 12, 6231-6249.
- Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR 874114
Bibliographic Information
- Jürgen Herzog
- Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
- MR Author ID: 189999
- Email: juergen.herzog@uni-essen.de
- Takayuki Hibi
- Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 219759
- Email: hibi@math.sci.osaka-u.ac.jp
- Ngô Viêt Trung
- Affiliation: Institute of Mathematics, Vien Toan Hoc, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@math.ac.vn
- Received by editor(s): March 18, 2007
- Published electronically: October 9, 2008
- Communicated by: Bernd Ulrich
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 409-414
- MSC (2000): Primary 13D02, 05C65
- DOI: https://doi.org/10.1090/S0002-9939-08-09308-8
- MathSciNet review: 2448558