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REMARK ON ELLIPTIC UNITS IN A Zp-EXTENSION
OF AN IMAGINARY QUADRATIC FIELD

TSUYOSHI ITOH

(Communicated by Ken Ono)

Abstract. We shall study the group of units modulo the group of elliptic
units in a Zp-extension of an imaginary quadratic field.

1. Main result

We fix an imaginary quadratic field k which is different from Q(
√
−1), Q(

√
−3),

and an odd prime number p. Let p be a prime ideal of k lying above p, and K/k
a Zp-extension which is unramified outside p. Assume that p is totally ramified in
K/k. For a positive integer n, we denote by kn the nth layer of K/k. Let An be
the Sylow p-subgroup of the ideal class group of kn, En the group of units in kn,
and pn the unique prime ideal of kn lying above p. Let c(pn) be the ideal class of
kn which contains pn. We put Dn = An ∩ 〈c(pn)〉 and A′

n = An/Dn. Moreover,
put k0 = k, and define A0, D0, and A′

0 similarly. For a finite set S, we denote by
|S| the number of elements in S.

For any integer n ≥ 1, let Φn be the group of certain elliptic units in kn which
is defined in Section 2. We will see later that Φn has finite index in En. Let Bn be
the Sylow p-subgroup of En/Φn. In this paper, we shall show the following:

Theorem 1.1. If |An| is bounded as n → ∞ (i.e. both of the Iwasawa λ- and µ-
invariants of K/k are zero), then A′

n and Bn are isomorphic as Gal(kn/k)-modules
for all sufficiently large n.

We mention that a similar result is already given in [7] for the case that p ≥ 5
splits in k, kn is the ray class field of k modulo pn+1, and p does not split in the
absolute class field of k. (When k is a real abelian field and K/k is the cyclotomic
Zp-extension, similar results are previously known. See [11], [15], etc.)

In Section 5, we will give an additional result. This result is obtained as a
corollary of known results.

2. Group of elliptic units

Fix an integer n ≥ 1. In this section, we will define the group Φn of elliptic units
in kn. Our construction is similar to that of [7]. We use the same notation as given
in Oukhaba [14].
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Let fn be the conductor of kn/k, and fn the minimal positive integer which is
contained in fn ∩ Z. Note that fn is a positive power of p. Let kfn

be the ray class
field of k modulo fn. We fix a Z-basis (ω1, ω2) of fn satisfying Im(ω1/ω2) > 0. Let

ϕfn
:=

(
κ(1, fn) η(ω1/ω2)2 ω−1

2

)12fn

be the Siegel-Ramachandra-Robert invariant defined in [14, Definition 2], where
κ(t, fn) is the Klein form (see [13, p. 27]) and

η(τ ) = e2πiτ/24
∞∏

n=1

(1 − e2πinτ )

is the Dedekind eta function.
As noted in [14], ϕfn

coincides with E(c0) in [19]. We also note that ϕfn
is only

dependent on fn (see [19, p. 223]). By [14, Proposition 2] or [19], we know that ϕfn

is an algebraic integer in kfn
and any 12f th

n root is contained in a certain abelian
extension field of k. We put ϕ̃kn,fn

= Nkfn /kn
ϕ2

fn
.

We mention that the roots of unity contained in kn are only ±1. Hence by [19,
Lemma 6], there is a unique element un of kn which satisfies

u3fn
n = ϕ̃kn,fn

.

(Note that fn is odd.) We also note that un is a pn-unit in kn (which follows from,
e.g., [14, Corollary 2]). Let E′

n be the group of pn-units in kn.

Definition 2.1. Let Φ′
n be the Z[Gal(kn/k)]-submodule of E′

n generated by ±1
and un. Similarly, let Ω′

n be the Z[Gal(kn/k)]-submodule of E′
n generated by ±1

and ϕ̃kn,fn
. Moreover, we put Φn = En ∩ Φ′

n and Ωn = En ∩ Ω′
n.

By the analytic class number formula ([13, Chapter 13, Theorem 2.1], [14, The-
orem A and Proposition 16]), we obtain

(En : Ωn) =
h(kn)
h(k)

(24fn)pn−1,

where h(kn) is the class number of kn and h(k) is the class number of k. By the
definition of Φn, we obtain the following:

Lemma 2.2.

(En : Φn) =
h(kn)
h(k)

8pn−1.

Let f be a homomorphism En/Φn → E′
n/Φ′

n induced from the natural mapping.
Since En ∩ Φ′

n = Φn, we see that f is injective.

Lemma 2.3. Assume that |An| is bounded as n → ∞. If n is sufficiently large,
then the cokernel of f is finite and its order is prime to p.
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Proof. Let Coker(f) be the cokernel of f . We have the following commutative
diagram of exact sequences:

0 0 0
↓ ↓ ↓

0 → Φn → En → En/Φn → 0
↓ ↓ ↓

0 → Φ′
n → E′

n → E′
n/Φ′

n → 0
↓ ↓ ↓

Φ′
n/Φn → E′

n/En → Coker(f) → 0
↓ ↓ ↓
0 0 0

Let d be the order of the ideal class of kn which contains pn. We fix an algebraic
integer v of kn which satisfies pd

n = (v). By using [14, Corollary 2], we can see that
p
24h(k)
n = (un) and hence 24h(k) is divisible by d.

Since |An| is bounded as n → ∞, we can see that A
Gal(kn/k)
n = Dn for all

sufficiently large n (cf. [5, Theorem 2], [3, Proposition 2.2]). By the genus formula,
we have |AGal(kn/k)

n | = |A0|. If n is sufficiently large, we get |A0| = |Dn| and then
24h(k)/d is prime to p. We note that unΦn is a generator of Φ′

n/Φn and vEn is
a generator of E′

n/En. Since v24h(k)/dEn = unEn, we see that the order of the
cokernel of the mapping Φ′

n/Φn → E′
n/En is finite and prime to p. �

3. Proof of Theorem 1.1

Assume that |An| is bounded as n → ∞. Let Bn be the Sylow p-subgroup of
En/Φn, and B′

n the Sylow p-subgroup of E′
n/Φ′

n. By Lemma 2.3, we have Bn
∼= B′

n

if n is sufficiently large.
The proof of Theorem 1.1 is given by using a well-known argument (cf. [11],

[15], [7], etc.). Fix a positive integer n which satisfies Bl
∼= B′

l and |Al| = |An| for
all l ≥ n. We can take a positive integer m > n which satisfies

ker(A′
n → A′

m) = A′
n.

We put Γm,n = Gal(km/kn).
From the results given in Section 2, we see that Φ′

m/{±1} is a free rank one
Z[Gal(km/k0)]-module. Hence both of the Tate cohomology groups Ĥ0(Γm,n, Φ′

m)
and H1(Γm,n, Φ′

m) are trivial. By using [14, Proposition 3], we can see that
Nkm/kn

Φ′
m = Φ′

n. From this, we see that (Φ′
m)Γm,n = Φ′

n because Ĥ0(Γm,n, Φ′
m) is

trivial.
By taking the long cohomology sequence of the following exact sequence

(3.1) 0 → Φ′
m → E′

m → E′
m/Φ′

m → 0,

we obtain the following exact sequence:

0 → Φ′
n → E′

n → (E′
m/Φ′

m)Γm,n → H1(Γm,n, Φ′
m).

Since H1(Γm,n, Φ′
m) is trivial, we see that B′

n
∼= (B′

m)Γm,n . By using Lemma 2.2,
we obtain

|B′
n| = |Bn| =

|An|
|A0|

=
|Am|
|A0|

= |Bm| = |B′
m|,
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and then we have an isomorphism B′
n
∼= B′

m induced from the natural injection.
Hence the action of Γm,n on B′

m is trivial. Consequently,

H1(Γm,n, B′
m) ∼= B′

m
∼= B′

n
∼= Bn.

On the other hand, we obtain the isomorphism

H1(Γm,n, E′
m) ∼= H1(Γm,n, B′

m)

by taking the exact sequence of the Tate cohomology groups of (3.1). Moreover,
we can see that

H1(Γm,n, E′
m) ∼= ker(A′

n → A′
m)

by using the same argument given in the proof of [9, Theorem 12]. Since ker(A′
n →

A′
m) = A′

n, we have shown Theorem 1.1.

4. Consideration for Theorem 1.1

Assume that p splits in k. Let p be a prime of k lying above p and K/k the
unique Zp-extension unramified outside p. Moreover, we assume that p is totally
ramified in K/k. Fukuda and Komatsu studied this Zp-extension in [3]. By using
[3, Proposition 2.2], we see that if |A0| = |D0|, then |An| is bounded as n → ∞.
In this case, we can see that |A′

n| = 1 for all n, and hence Theorem 1.1 is trivially
satisfied. However, Fukuda and Komatsu also found many imaginary quadratic
fields such that |A0| 
= |D0| and satisfy the assumption of Theorem 1.1 (see [3]).
This implies there are nontrivial examples for Theorem 1.1 in this case.

Assume that p does not split in k. In this case, if p does not divide the class
number of k (i.e. A0 is trivial), then for any Zp-extension K/k and for any n,
An is trivial. We also remark that if the class number of k is divisible by p, then
the cyclotomic Zp-extension of k does not satisfy the assumption of Theorem 1.1
because |An| is not bounded. However, Ozaki’s result [17, Theorem 2] tells us
that if “Greenberg’s generalized conjecture” [6, Conjecture 3.5] holds for k and p,
then there are infinitely many Zp-extensions of k which satisfy the assumption of
Theorem 1.1.

5. Additional result

Let the notation be as in the previous sections. In this section, we assume that p
does not split in k, and K/k is the cyclotomic Zp-extension. We noted in Section 4
that we cannot apply Theorem 1.1 for K/k except for the trivial case. However,
we can obtain a similar type result. Kubert and Lang [12] pointed out that the
group of “circular numbers” modulo the group of “modular numbers” relates to the
Stickelberger ideal. We shall use their idea.

For a positive integer r, we put ζr = e2πi/r. Fix an integer n ≥ 1. Let Qn be the
nth layer of the cyclotomic Zp-extension of Q. Note that the maximal real subfield
of kn is Qn. We put Γn = Gal(Qn/Q). Let C ′

n be the Z[Γn]-module generated by
±1 and

NQ(ζpn+1 )/Qn
(1 − ζpn+1).

Let χ be the Dirichlet character corresponding to k and d the conductor of k.
We denote by qn the least common multiple of d and pn+1. We put

ξn(χ) = − 1
qn

∑
0<a<qn,(a,qn)=1

aχ(a) (σa|Qn
)−1,
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where σa is the element of Gal(Q(ζqn
)/Q) defined by ζσa

qn
= ζa

qn
(see, e.g., [20]). It

is well known that

2
∑

0<a<qn,(a,qn)=1

(
1
2
− a

qn

)
(σa|kn

)−1

is contained in Z[Gal(kn/Q)] (see, e.g., [2, Theorem 1 (i)], [18, Theorem 7.2.2]).
From this, we can see that ξn(χ) is contained in Z[Γn].

Let un be the element of kn defined in Section 2. By using the result of Gillard
[4] (which is a generalization of the result of Kubert and Lang [12]), we can show
that

un =
(
NQ(ζpn+1 )/Qn

(1 − ζpn+1)
)2ξn(χ)

.

(See [4, p. 184, Corollaire]. See also [10].) Hence we see that Φ′
n is contained in C ′

n,
and

(C ′
n/Φ′

n) ⊗Z Zp
∼= Zp[Γn]/ξn(χ)Zp[Γn].

On the other hand, if A0 is a cyclic group, then

An
∼= Zp[Γn]/ξn(χ)Zp[Γn]

(see [1, Lemma 2.14 and Lemma 2.15]). Hence we have obtained the following:

Theorem 5.1. If A0 is a cyclic group, then

An
∼= (C ′

n/Φ′
n) ⊗Z Zp

for all n ≥ 1.

We note that similar type results are given in [8], [16], and [7].
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