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Abstract. We consider C2-Hamiltonian functions on compact 4-dimensional
symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow,
namely the so-called Newhouse dichotomy. We show that for any open set
U intersecting a far from Anosov regular energy surface, there is a nearby
Hamiltonian having an elliptic closed orbit through U . Moreover, this implies
that, for far from Anosov regular energy surfaces of a C2-generic Hamiltonian,
the elliptic closed orbits are generic.

1. Introduction

Hamiltonian systems form a fundamental subclass of dynamical systems. Their
importance follows from the vast range of applications throughout different branches
of science. The generic properties of such systems are thus of great interest since
they give us the “typical” behaviour (in some appropriate sense) that one could ex-
pect from the class of models at hand (cf. [12]). There are, of course, considerable
limitations to the amount of information one can extract from a specific system by
looking at generic cases. Nevertheless, it is of great utility to learn that a selected
model can be slightly perturbed in order to obtain dynamics we understand in a
reasonable way.

The well-known Newhouse dichotomy is among such generic properties involving
certain classes of conservative dynamical systems. In a broad sense, it deals with
systems whose dynamics can only be either of uniformly hyperbolic type or else the
elliptic orbits are dense. All other possibilities are excluded.

The Newhouse dichotomy was first proved for C1-generic symplectomorphisms
in [10], and extensions have appeared afterwards [2, 13, 9]. Those were all done for
discrete-time dynamics. More recently, a proof for divergence-free 3-flows is con-
tained in the work of Bessa and Duarte [5] and it is, as far as we are aware, the only
complete result of this nature concerning continuous-time systems. As a matter of
fact, the Hamiltonian case is already mentioned in [10, section 6]. However, it is
only under the form of a statement and a plan based in the symplectomorphisms
approach. Briefly, that consists in the following three steps: the unfolding of homo-
clinic tangencies by a weakened version of Takens’ homoclinic point theorem; the
consequent implication that for a C1-generic symplectomorphism the homoclinic
points are dense; and an argument deriving that, unless Anosov, those maps can be
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C1-approximated by others yielding an elliptic periodic point in any pre-assigned
open set.

Our proof of the Newhouse dichotomy for C1-Hamiltonian flows (i.e. C2-Hamil-
tonian functions) in symplectic compact 4-manifolds, is considerably different. We
show Newhouse’s statement [10, Theorem 6.2] filling a gap in the literature con-
cerning this problem. Our method explores a weak form of hyperbolicity, due to
Mañé, called dominated splitting (see [8] and references therein). When there is an
absence of domination, we follow an adaptation of Mañé’s perturbation techniques
contained in [5] to create closed elliptic orbits. On the other hand, away from the
uniformly hyperbolic energy levels we can exclude domination. For that we rely on
recently available results, viz. Vivier’s Hamiltonian version of Franks’ lemma [14]
and the authors’ theorem on the Bochi-Mañé dichotomy for Hamiltonians [4] (see
also [6, 3]).

Let (M, ω) be a smooth symplectic compact 4-manifold with a smooth boundary
∂M (including the case ∂M = ∅). We denote Cs(M, R), 2 ≤ s ≤ ∞, as the set of
real-valued functions on M that are constant on ∂M , the Cs-Hamiltonians. This
set is endowed with the C2-topology.

An energy surface is a connected component of an (invariant) level set H−1(e) of
a Hamiltonian H, where e ∈ H(M) ⊂ R is called the energy. It is regular if it does
not contain critical points. A regular energy surface is Anosov if it is uniformly
hyperbolic. It is far from Anosov if it is not in the closure of Anosov surfaces.
Notice that by structural stability the union of Anosov energies is open. Moreover,
Anosov surfaces do not contain elliptic closed orbits.

Theorem 1. Given an open subset U ⊂ M , if a Cs-Hamiltonian, 2 ≤ s ≤ ∞,
has a far from Anosov regular energy surface intersecting U , then it can be C2-
approximated by a C∞-Hamiltonian having a closed elliptic orbit through U .

As an almost direct consequence we arrive at the Newhouse dichotomy for 4-
dimensional Hamiltonians. Recall that for a C2-generic Hamiltonian all but finitely
many points are regular.

Theorem 2. For a C2-generic Hamiltonian H ∈ Cs(M, R), 2 ≤ s ≤ ∞, the union
of the Anosov regular energy surfaces and the closed elliptic orbits forms a dense
subset of M .

At this stage it is relevant to discuss the recent result (in the same 4-dimensional
setting) that motivated the proof of the Hamiltonian version of Franks’ lemma.
Thérèse Vivier showed in [14] that any robustly transitive regular energy surface of
a C2-Hamiltonian is Anosov. Recall that a regular energy surface is transitive if it
has a dense orbit, and it is robustly transitive if the restriction of any sufficiently
C2-close Hamiltonian to a nearby regular energy surface is still transitive. It is
easy to see that our results also imply this theorem. In fact, if a regular energy
surface E of a C2-Hamiltonian H is far from Anosov, then by Theorem 1 there
exists a C2-close C∞-Hamiltonian with an elliptic closed orbit on a nearby regular
energy surface. This invalidates the chance of robust transitivity for H according
to a KAM-type criterium (see [14, Corollary 9]).

In section 2 we present basic notions and results to be used later for the proofs
of the theorems. Those appear in section 3 for Theorem 1 and in section 4 for
Theorem 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ELLIPTIC DYNAMICS OF 4-DIMENSIONAL HAMILTONIANS 587

2. Preliminaries

2.1. Notation and basic definitions. We refer to [4] for the basic notions in
Hamiltonian dynamical systems and the notation used in this paper. In particular,
we recall that given a differentiable Hamiltonian H : M → R we denote XH as
the Hamiltonian vector field, ϕt

H the corresponding Hamiltonian flow, and Φt
H

the transversal linear Poincaré flow on an energy surface. Notice that Φt
H is an

automorphism of a two-dimensional vector bundle
⋃

x∈M Nx.
For a ϕt

H-invariant set Λ ⊂ M and m ∈ N we say that a splitting of the bundle
NΛ = N−

Λ ⊕ N+
Λ is an m-dominated splitting for the transversal linear Poincaré

flow if it is Φt
H -invariant and continuous such that

(2.1)
‖Φm

H(x)|N−
x ‖

‖Φm
H(x)|N+

x ‖
≤ 1

2
, x ∈ Λ.

We call NΛ = N−
Λ ⊕N+

Λ a dominated splitting if it is m-dominated for some m ∈ N.
A metric on the manifold M can be derived in the usual way through the Darboux

charts. It will be denoted by dist. Hence we define the open balls B(p, r) of the
points x verifying dist(x, p) < r.

2.2. Elliptic, parabolic and hyperbolic closed orbits. Let Γ ⊂ M be a closed
orbit of least period τ . The characteristic multipliers of Γ are the eigenvalues of
Φτ

H(p), which are independent of the point p ∈ Γ. We say that Γ is
• elliptic iff the two characteristic multipliers are simple, non-real and of

modulus 1;
• parabolic iff the characteristic multipliers are real and of modulus 1;
• hyperbolic iff the characteristic multipliers have modulus different from 1.

It is clear that under small perturbations, elliptic and hyperbolic orbits are stable
whilst parabolic ones are unstable.

We refer to a point in a closed orbit as periodic. Periodic points are classified in
the same way as the respective closed orbit.

2.3. Perturbation lemmas. We include here two perturbation results available
in the literature that will be used in the remaining sections. The first is a version
of Pugh’s closing lemma, stating that the orbit of a non-wandering point can be
approximated for a very long time by a closed orbit of a nearby Hamiltonian.

Theorem 2.1 (Closing lemma for Hamiltonians [11]). Take H ∈ Cs(M, R), 2 ≤
s ≤ ∞, a non-wandering point x ∈ M and ε, r, τ > 0. Then, we can find H̃ ∈
C2(M, R), a closed orbit Γ of H̃ with least period �, p ∈ Γ and a map g : [0, τ ] → [0, �]
close to the identity such that:

• ‖H̃ − H‖C2 < ε,
• dist

(
ϕt

H(x), ϕg(t)

H̃
(p)

)
< r, 0 ≤ t ≤ τ , and

• H = H̃ on M \ A, where A =
⋃

0≤t≤�

(
B(p, r) ∩ B(ϕt

H̃
(p), r)

)
.

The next theorem is a version of Franks’ lemma. Roughly, it says that we can
realize a Hamiltonian corresponding to a given perturbation of the transversal linear
Poincaré flow. It is proved for 2d-dimensional manifolds with d ≥ 2.

Theorem 2.2 (Franks’ lemma for Hamiltonians [14]). Let H ∈ Cs(M, R), 2 ≤
s ≤ ∞, ε, τ > 0 and x ∈ M . There exists δ > 0 such that for any flowbox V
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of an injective arc of orbit Σ = ϕ
[0,t]
H (x), t ≥ τ , and a transversal symplectic δ-

perturbation F of Φt
H(x), there is H̃ ∈ Cmax{2,s−1}(M, R) satisfying:

• ‖H̃ − H‖C2 < ε,
• Φt

H̃
(x) = F ,

• H = H̃ on Σ ∪ (M \ V ).

3. Proof of Theorem 1

By Robinson’s version of the Kupka-Smale theorem [12], a C2-generic Hamilton-
ian has all closed orbits of hyperbolic or elliptic type. Moreover, it follows from the
closing lemma that for a C2-generic Hamiltonian H, the set of closed orbits Per(H)
is dense in the non-wandering set of H. Hence, by Poincaré recurrence, Per(H) is
dense in M .

3.1. Hyperbolic orbits with domination. Let us recall an elementary conse-
quence of the persistence of dominated splittings; see [8] for the full details.

Lemma 3.1. Consider H ∈ Cs(M, R), 2 ≤ s ≤ ∞, and a ϕt
H-invariant Λ ⊂ M

with m-dominated splitting for Φt
H . Then, there exists δ > 0 and a neighborhood V

of Λ such that the set ⋂
t∈R

ϕt
H(V )

has an m′-dominated splitting for any Hamiltonian H̃ δ-C2-close to H for m′ > m.

3.2. Absence of domination. The following propositions allow us to use the lack
of hyperbolic behaviour of the transversal linear Poincaré flow to produce elliptic
closed orbits by small perturbations.

Proposition 3.2. Let H ∈ Cs(M, R), 2 ≤ s ≤ ∞, and ε > 0. There is θ > 0 such
that for any closed hyperbolic orbit Γ with least period τ > 1 and �(N u

q ,N s
q ) < θ,

q ∈ Γ, there is H̃ ∈ C∞(M, R) ε-C2-close to H for which Γ is elliptic with least
period τ .

Proof. We start by choosing a C∞-Hamiltonian H1 C2-close to H having a closed
orbit nearby Γ. If Γ is elliptic, the proposition is proved. So we assume it is
hyperbolic.

In a thin flowbox about Γ use local symplectic flowbox coordinates (see [4, The-
orem 4.1]) and the perturbation described in [4, Lemma 4.2] to interchange N u

q and
N s

q . Indeed, we find α0 so that for any 0 < α < α0,

RθN u
q = N s

ϕ1
H1

(q),

where Rα ∈ SO(2, R) rotates by α. By [5, Lemma 3.5] Φt
H1

(q)Rθ is elliptic. Then,
Theorem 2.2 guarantees the existence of H̃ as claimed. �

Proposition 3.3. Let H ∈ Cs(M, R), 2 ≤ s ≤ ∞, and ε, θ > 0. There exist
m, T ∈ N (T � m) such that, if a hyperbolic closed orbit Γ with least period τ > T
satisfies:

(1) �(N u
q ,N s

q ) ≥ θ for all q ∈ Γ, and
(2) Γ has no m-dominated splitting,
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then we can find H̃ ∈ C∞(M, R) ε-C2-close to H for which Γ is elliptic with least
period τ .

Proof. We choose a C∞-Hamiltonian H0 C2-close to H satisfying the same hy-
pothesis. The idea of the proof is to adapt the proofs of the Lemmas 3.10-3.12
in [5] to the Hamiltonian setting. This requires the use of the perturbation from [4,
Lemma 4.2] considered in local symplectic flowbox coordinates about Γ (see [4,
Theorem 4.1]).

So, [5, Lemma 3.10] implies that there exists m(ε, θ) ∈ N, such that given any
periodic orbit q of period τ (q) > m satisfying (1) and (2) above, we can find a
Hamiltonian H1 ε/3-C2-close such that

(3.1) Φm
H1

(N u
q ) = N s

ϕm
H (q).

By [5, Lemma 3.11], there exists K = K(θ, m) > 0 and H2 ε/3-C2-close to H1

such that

(3.2) ‖Φτ
H2

(q)‖ < K,

where q ∈ Γ and Γ is any closed orbit of period τ satisfying the statements (1) and
(2) of the lemma. Notice that (3.1) allows us to blend different expansion rates,
thus obtaining K not depending on how large τ is.

Now, define T > m depending on K as in [5, Lemma 3.12], and take τ > T . Let
q ∈ M be a periodic point of period ≥ τ and, for simplicity, assume that τ ∈ N. We
concatenate its orbit Γ in τ time-one disjoint intervals. In each one of these intervals
we consider an abstract symplectic action shrinking by a factor of order ε along the
direction N u and stretching by a factor of order ε along the direction N s. Then, we
use Theorem 2.2 to realize this perturbation by a Hamiltonian ε/3-C2-close. Since
this procedure is repeated τ -times and τ is very large while K remains bounded
(see (3.2)), it follows that there exists a perturbation H̃ such that ‖Φτ

H̃
(q)‖ = 1

and q is of elliptic type.
�

3.3. Proof of Theorem 1. Take H ∈ Cs(M, R), 2 ≤ s ≤ ∞, ε > 0, a regular
energy surface E far from Anosov and take an open subset U ⊂ M such that
E ∩ U 
= ∅.

As mentioned earlier, for a C2-generic Hamiltonian, closed orbits are dense and
there are no parabolic ones. We further assume that there are no closed elliptic
orbits through U .

For a hyperbolic closed orbit Γ, consider the angle between the stable and un-
stable directions. If it is smaller than θ given by Proposition 3.2, then we have a
Hamiltonian ε-C2-close for which Γ is elliptic. Now, let m and T be as in Propo-
sition 3.3. If Γ has angle larger than θ with least period greater than T and no
m-dominated splitting, then Γ is again elliptic for an ε-C2-close Hamiltonian.

Therefore, it remains to consider the case of all closed orbits through U being
hyperbolic with angle greater than θ and with m-dominated splitting. We will show
that this is unattainable for a C2-generic Hamiltonian.

By Lemma 3.1, the above parameters m and θ vary continuously with H. In fact,
for ε̂ > 0 small enough, every closed orbit associated to an ε̂-C2-close Hamiltonian
has uniform parameters of dominated splitting, still denoted by m and θ.

From [4, Theorem 1], and since E is not approximated by an Anosov regular
energy surface, there exists a Hamiltonian H2 ε̂/3-C2-close to H and a regular
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energy surface Ê (arbitrarily close to E) of H2 having zero Lyapunov exponents
µÊ -a.e. for ϕt

H2
. Here µÊ is the natural induced invariant measure on the energy

level sets (see [4]). Denote by Z ⊂ Ê the full measure subset of such points with
zero Lyapunov exponents. Using Oseledets’ theorem (cf. e.g. [4]), for x ∈ Z and
any δ > 0, there exists tx ∈ R such that

(3.3) e−δt < ‖Φt
H2

(x)‖ < eδt whenever t ≥ tx.

Let P ⊂ U ∩ Z be the positive measure (same as the one of U ∩ Z) Poincaré
recurrence subset associated to H2 and µÊ . Then, for x ∈ P , there exists a strictly
increasing sequence of integers nk(x) such that ϕ

nk(x)
H2

(x) ∈ U ∩ Z and

lim
k→∞

ϕ
nk(x)
H2

(x) = x.

Let T denote the set of positive return times to U ∩ Z by ϕt
H2

.
Take τ ∈ T ∩ [tx, +∞). By the closing lemma (Theorem 2.1), the ϕt

H2
-orbit of

x can be approximated up to the (very long) time τ by a closed orbit Γ of an ε̂/3-
C2-close Hamiltonian H1. If we take a small enough r > 0 in the closing lemma,
then (3.3) gives

e−δτ < ‖Φτ
H1

(p)‖ < eδτ with p ∈ Γ.

Notice that τ ≈ �, the least period of Γ.
We have thus created a closed orbit where Φτ

H1
(p) is “weakly” hyperbolic; i.e.,

the exponent δ is as small as we want. We now perturb it to cancel the remaining
hyperbolicity and create by Franks’ lemma (Theorem 2.2) an elliptic closed orbit.
It gives a Hamiltonian H0 ε̂/3-C2-close verifying those conditions. This contradicts
the fact asserted earlier that every Hamiltonian ε̂-C2-close to H has closed orbits
with uniform parameters of dominated splitting m and θ. The proof of Theorem 1
is therefore complete.

4. Proof of Theorem 2

Consider the set
M = M × Cs(M, R)

endowed with the standard product topology. Recall that the C2-topology is used
on the second component. Given p ∈ M , Ep(M) is the energy surface passing
through p. The subset

A = {(p, H) ∈ M : Ep(H) is an Anosov regular energy surface}

is open by structural stability. Let A be its closure with complement N = M\A.
Given ε > 0 and an open set U ⊂ N , define the subset O(U , ε) of pairs (p, H) ∈ U

for which H has a closed elliptic orbit through the 3-dim ball B(p, ε) ∩ Ep(H). It
follows from Theorem 1 and the fact that in the 4-dim case elliptic orbits are stable
that O(U , ε) is dense and open in U .

Let εk be a positive sequence converging to zero. Then, define recursively the
sequence of dense and open sets U0 = N and

Uk = O(Uk−1, εk−1), k ∈ N.

Notice that
⋂

k∈N
Uk is the set of pairs (p, H) yielding the property that p is accu-

mulated by periodic elliptic points for H.
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Finally, the above implies that A∪ Uk is open and dense in M and that

A :=
⋂
k∈N

(A∪ Uk) = A∪
⋂
k∈N

Uk

is residual. By [7, Proposition A.7], we write

A =
⋃

H∈R

MH × {H},

where R is C2-residual in Cs(M, R) and, for each H ∈ R, MH is a residual subset
of M , having the following property: if H ∈ R and p ∈ MH , then Ep(H) is Anosov
or p is accumulated by periodic elliptic points.
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