Hamiltonian elliptic dynamics on symplectic $4$-manifolds
HTML articles powered by AMS MathViewer
- by Mário Bessa and João Lopes Dias
- Proc. Amer. Math. Soc. 137 (2009), 585-592
- DOI: https://doi.org/10.1090/S0002-9939-08-09578-6
- Published electronically: August 20, 2008
- PDF | Request permission
Abstract:
We consider $C^2$-Hamiltonian functions on compact $4$-dimensional symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set $U$ intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through $U$. Moreover, this implies that, for far from Anosov regular energy surfaces of a $C^2$-generic Hamiltonian, the elliptic closed orbits are generic.References
- Alexander Arbieto and Carlos Matheus, A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1399–1417. With an appendix by David Diica and Yakov Simpson-Weller. MR 2358971, DOI 10.1017/S014338570700017X
- Marie-Claude Arnaud, The generic symplectic $C^1$-diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1621–1639. MR 1944396, DOI 10.1017/S0143385702000706
- Mário Bessa, The Lyapunov exponents of generic zero divergence three-dimensional vector fields, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1445–1472. MR 2358973, DOI 10.1017/S0143385707000107
- M. Bessa and J. Lopes Dias, Generic dynamics of $4$-dimensional $C^2$ Hamiltonian systems, Commun. Math. Phys 281, 3 (2008), 597–619.
- M. Bessa and P. Duarte, Abundance of elliptical dynamics on conservative $3$-flows, Dynamical Systems–An International Journal (to appear).
- Jairo Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1667–1696. MR 1944399, DOI 10.1017/S0143385702001165
- Jairo Bochi and Bassam Fayad, Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for $\textrm {SL}(2,{\Bbb R})$ cocycles, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 3, 307–349. MR 2267781, DOI 10.1007/s00574-006-0014-1
- Christian Bonatti, Lorenzo J. Díaz, and Marcelo Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005. A global geometric and probabilistic perspective; Mathematical Physics, III. MR 2105774
- Vanderlei Horita and Ali Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 5, 641–661. MR 2259610, DOI 10.1016/j.anihpc.2005.06.002
- Sheldon E. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (1977), no. 5, 1061–1087. MR 455049, DOI 10.2307/2374000
- Charles C. Pugh and Clark Robinson, The $C^{1}$ closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 261–313. MR 742228, DOI 10.1017/S0143385700001978
- R. Clark Robinson, Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562–603. MR 273640, DOI 10.2307/2373361
- Radu Saghin and Zhihong Xia, Partial hyperbolicity or dense elliptic periodic points for $C^1$-generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), no. 11, 5119–5138. MR 2231887, DOI 10.1090/S0002-9947-06-04171-7
- T. Vivier, Robustly transitive $3$-dimensional regular energy surfaces are Anosov, Institut de Mathématiques de Bourgogne, Dijon, Preprint 412 (2005). http://math.u-bourgogne.fr/topo/prepub/pre05.html
Bibliographic Information
- Mário Bessa
- Affiliation: Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- MR Author ID: 804955
- ORCID: 0000-0002-1758-2225
- Email: bessa@fc.up.pt
- João Lopes Dias
- Affiliation: Departamento de Matemática, ISEG, Universidade Técnica de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
- Email: jldias@iseg.utl.pt
- Received by editor(s): January 23, 2008
- Published electronically: August 20, 2008
- Communicated by: Bryna Kra
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 585-592
- MSC (2000): Primary 37J25, 37D30; Secondary 37C27
- DOI: https://doi.org/10.1090/S0002-9939-08-09578-6
- MathSciNet review: 2448579