## Class groups of global function fields with certain splitting behaviors of the infinite prime

HTML articles powered by AMS MathViewer

- by Yoonjin Lee
- Proc. Amer. Math. Soc.
**137**(2009), 415-424 - DOI: https://doi.org/10.1090/S0002-9939-08-09581-6
- Published electronically: October 6, 2008
- PDF | Request permission

## Abstract:

For certain two cases of splitting behaviors of the prime at infinity with unit rank $r$, given positive integers $m, n$, we construct infinitely many global function fields $K$ such that the ideal class group of $K$ of degree $m$ over $\mathbb {F}(T)$ has $n$-rank at least $m-r-1$ and the prime at infinity splits in $K$ as given, where $\mathbb {F}$ denotes a finite field and $T$ a transcendental element over $\mathbb {F}$. In detail, for positive integers $m$, $n$ and $r$ with $0 \le r \le m-1$ and a given signature $(e_i, \mathfrak {f}_i)$, $1 \le i \le r+1$, such that $\sum _{i=1}^{r+1}{e_i\mathfrak {f}_i} =m$, in the following two cases where $e_i$ is arbitrary and $\mathfrak {f}_i =1$ for each $i$, or $e_i =1$ and $\mathfrak {f}_i$’s are the same for each $i$, we construct infinitely many global function fields $K$ of degree $m$ over $\mathbb {F}(T)$ such that the ideal class group of $K$ contains a subgroup isomorphic to $(\mathbb {Z}/n\mathbb {Z})^{m-r-1}$ and the prime at infinity ${\wp _\infty }$ splits into $r+1$ primes $\mathfrak {P}_1, \mathfrak {P}_2, \cdots , \mathfrak {P}_{r+1}$ in $K$ with $e(\mathfrak {P}_i/{\wp _\infty }) = e_i$ and $\mathfrak {f}(\mathfrak {P}_i/{\wp _\infty }) = \mathfrak {f}_i$ for $1 \le i \le r+1$ (so, $K$ is of unit rank $r$).## References

- Takashi Azuhata and Humio Ichimura,
*On the divisibility problem of the class numbers of algebraic number fields*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**30**(1984), no. 3, 579–585. MR**731519** - Christian Friesen,
*Class number divisibility in real quadratic function fields*, Canad. Math. Bull.**35**(1992), no. 3, 361–370. MR**1184013**, DOI 10.4153/CMB-1992-048-5 - A. Frohlich and M.J. Taylor,
*Algebraic Number Theory*, Cambridge University Press, 1993. - Serge Lang,
*Algebra*, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR**0197234** - Yoonjin Lee,
*The structure of the class groups of global function fields with any unit rank*, J. Ramanujan Math. Soc.**20**(2005), no. 2, 125–145. MR**2169092** - Yoonjin Lee and Allison M. Pacelli,
*Class groups of imaginary function fields: the inert case*, Proc. Amer. Math. Soc.**133**(2005), no. 10, 2883–2889. MR**2159765**, DOI 10.1090/S0002-9939-05-07910-4 - Yoonjin Lee and Allison M. Pacelli,
*Higher rank subgroups in the class groups of imaginary function fields*, J. Pure Appl. Algebra**207**(2006), no. 1, 51–62. MR**2244260**, DOI 10.1016/j.jpaa.2005.09.001 - T. Nagell,
*Uber die Klassenzahl imaginar quadratischer Zahlkorper*, Abh. Math. Sem. Univ. Hamburg**1**(1922), 140–150. - Shin Nakano,
*On ideal class groups of algebraic number fields*, J. Reine Angew. Math.**358**(1985), 61–75. MR**797674**, DOI 10.1515/crll.1985.358.61 - Jürgen Neukirch,
*Algebraic number theory*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR**1697859**, DOI 10.1007/978-3-662-03983-0 - Allison M. Pacelli,
*Abelian subgroups of any order in class groups of global function fields*, J. Number Theory**106**(2004), no. 1, 26–49. MR**2029780**, DOI 10.1016/j.jnt.2003.12.003 - Allison M. Pacelli,
*The prime at infinity and the rank of the class group in global function fields*, J. Number Theory**116**(2006), no. 2, 311–323. MR**2195928**, DOI 10.1016/j.jnt.2005.04.014 - Michael Rosen,
*Number theory in function fields*, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR**1876657**, DOI 10.1007/978-1-4757-6046-0 - Yoshihiko Yamamoto,
*On unramified Galois extensions of quadratic number fields*, Osaka Math. J.**7**(1970), 57–76. MR**266898**

## Bibliographic Information

**Yoonjin Lee**- Affiliation: Department of Mathematics, Ewha Womans University, Seoul, 120-750, Republic of Korea
- MR Author ID: 689346
- ORCID: 0000-0001-9510-3691
- Email: yoonjinl@ewha.ac.kr
- Received by editor(s): April 26, 2007
- Published electronically: October 6, 2008
- Additional Notes: This work was supported by the Ewha Womans University Research Grant of 2007
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 415-424 - MSC (2000): Primary 11R29; Secondary 11R58
- DOI: https://doi.org/10.1090/S0002-9939-08-09581-6
- MathSciNet review: 2448559