Function spaces of CW homotopy type are Hilbert manifolds
HTML articles powered by AMS MathViewer
- by Jaka Smrekar and Atsushi Yamashita
- Proc. Amer. Math. Soc. 137 (2009), 751-759
- DOI: https://doi.org/10.1090/S0002-9939-08-09584-1
- Published electronically: August 28, 2008
- PDF | Request permission
Abstract:
Let $X$ be a countable CW complex and $Y$ an ANR (for metric spaces) and let $Y^X$ denote the space of continuous maps from $X$ to $Y$ with the compact-open topology. We show that, under mild restrictions, the following are equivalent: (1) $Y^X$ is an $\ell ^2$-manifold, (2) $Y^X$ is an ANR, (3) $Y^X$ has the homotopy type of a CW complex. We also give a few interesting examples and applications.References
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- Robert Cauty, Une caractérisation des rétractes absolus de voisinage, Fund. Math. 144 (1994), no. 1, 11–22 (French, with English summary). MR 1271475, DOI 10.4064/fm-144-1-11-22
- Tammo tom Dieck, Partitions of unity in homotopy theory, Compositio Math. 23 (1971), 159–167. MR 293625
- T. Dobrowolski and H. Toruńczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), no. 3, 229–235. MR 623731, DOI 10.1016/0166-8641(81)90001-8
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- C. R. F. Maunder, Algebraic topology, Dover Publications, Inc., Mineola, NY, 1996. Reprint of the 1980 edition. MR 1402473
- E. Michael, Uniform ARs and ANRs, Compositio Math. 39 (1979), no. 2, 129–139. MR 546964
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744
- Katsuro Sakai, The space of cross sections of a bundle, Proc. Amer. Math. Soc. 103 (1988), no. 3, 956–960. MR 947690, DOI 10.1090/S0002-9939-1988-0947690-7
- Jaka Smrekar, Compact open topology and CW homotopy type, Topology Appl. 130 (2003), no. 3, 291–304. MR 1978893
- J. Smrekar, CW type of inverse limits and function spaces, arXiv:math.AT/07082838.
- J. Smrekar, Homotopy type of mapping spaces and existence of geometric exponents, Forum Math., in press.
- James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/0040-9383(63)90006-5
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
- H. Toruńczyk, A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of $l_2$-manifolds” [Fund. Math. 101 (1978), no. 2, 93–110; MR0518344 (80g:57019)] and “Characterizing Hilbert space topology” [ibid. 111 (1981), no. 3, 247–262; MR0611763 (82i:57016)], Fund. Math. 125 (1985), no. 1, 89–93. MR 813992, DOI 10.4064/fm-125-1-89-93
- A. Yamashita, Non-separable Hilbert manifolds of continuous mappings, arXiv:math.GN/ 0610214v1.
Bibliographic Information
- Jaka Smrekar
- Affiliation: Fakulteta za Matematiko in Fiziko, Jadranska ul. 19, SI-1111 Ljubljana, Slovenia
- Email: jaka.smrekar@fmf.uni-lj.si
- Atsushi Yamashita
- Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan
- Email: yonster@ms.u-tokyo.ac.jp
- Received by editor(s): February 1, 2008
- Published electronically: August 28, 2008
- Additional Notes: The first author was supported in part by the ARRS research project No. J1-6128-0101-04.
The second author was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. - Communicated by: Alexander N. Dranishnikov
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 751-759
- MSC (2000): Primary 54C35; Secondary 55M15, 57N20
- DOI: https://doi.org/10.1090/S0002-9939-08-09584-1
- MathSciNet review: 2448598