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Abstract. Let X and Y be affine nonsingular real algebraic varieties. One
of the classical problems in real algebraic geometry is whether a given C∞

mapping f : X → Y can be approximated by entire rational mappings in the
space of C∞ mappings. In this work, we obtain some sufficient conditions in
the case when Y is the standard sphere Sn.

1. Introduction and the results

Given two nonsingular affine real algebraic varieties X and Y , we regard the
set R(X, Y ) of all entire rational maps from X into Y as a subset of the space
C∞(X, Y ) of all C∞ maps from X into Y endowed with the C∞-topology.

In this study we focus on the question of when C∞ maps between nonsingular
affine real algebraic varieties can be approximated by entire rational maps. If X is
compact and nonsingular, as indicated by the classical Stone-Weierstrass approx-
imation theorem, every C∞ mapping f : X → R

n can be approximated by the
polynomial maps in C∞(X, Rn). In particular, every C∞ mapping from X into
Euclidean space can be approximated by entire rational maps in the C∞-topology.
The general idea is to try to extend this result to different target spaces. The next
natural case is to take the standard n-dimensional unit sphere

Sn = {x0, ..., xn ∈ R
n+1 | x2

0 + ... + x2
n = 1}

as a target space. In this case, the approximation problem becomes very difficult.
There are some positive results in this direction. First, Ivanov proved that the
smooth map f : X → S1 can be approximated by entire rational maps from X to
S1 if and only if f∗(u) belongs to H1

alg(X, Z2), where u is a generator of H1
alg(S

1, Z2)
[9]. After that Bochnak and Kucharz extended this result to S2 and obtained some
partial results for S4 [3, 5]. There are also some negative results. Loday showed that
any polynomial map from Tn to Sn is null homotopic [10]. Bochnak and Kucharz
proved that any entire rational map from X × S2n−k to S2n is null homotopic,
where k is the dimension of X and k < 2n [3] (see also [11, 12]).

We examine this approximation problem for maps to spheres that factor through
the real or the complex projective spaces. Our main results follow.
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Theorem 1.1. Let X2n be a nonsingular compact orientable real algebraic variety
and f : X2n → S2n be a continuous map. If there is a cohomology class u ∈
H2

C−alg(X, Z) such that un = f∗(α), where α ∈ H2n(S2n, Z) is a generator, then f
is homotopic to an entire rational map.

The next theorem gives a partial answer to the converse of the above theorem.

Theorem 1.2. Let f : X2n → S2n be a continuous map where X2n is a nonsingular
compact orientable real algebraic variety. If there is an entire rational map f̃ :
X → CP

n such that π ◦ f̃ is homotopic to f , then there is a cohomology class
u ∈ H2

C−alg(X, Z) such that un = f∗(α), where α is a generator of H2n(S2n, Z).

For a nonorientable real algebraic variety we have the following result.

Theorem 1.3. Let Xn be a nonorientable, closed, nonsingular variety and f : X →
Sn be a continuous map. If there is some v ∈ H1

alg(X, Z2) such that vn = f∗(α)
and α ∈ Hn(Sn, Z2) is a generator, then f is homotopic to an entire rational map.

Remark 1.4. Clearly in Theorems 1.1 and 1.3, the assumption of the existence of
certain algebraic cohomology classes on X is not necessary since the identity map
id : Sk → Sk is entire rational for any k.

Example 1.5. Let M be a smooth closed orientable manifold of dimension 2n and
u ∈ H2(M�CP

n, Z) be such that un ∈ H2n(M�CP
n, Z) is a generator. Then, by

Theorem 1.2 of [6], M�CP
n has an algebraic model X such that u ∈ H2

C−alg(X, Z).
Hence, there are plenty of examples of algebraic varieties satisfying the hypothesis
of Theorem 1.1.

Example 1.6. Let M be a smooth closed orientable manifold of dimension n and
w ∈ H1(M, Z2) such that wn is a generator of Hn(M, Z2). Let G be a subgroup
of H1(M, Z2) generated by w and w1(M). Then, by Theorem 4.1 of [7], there
exist an algebraic model X of M and a diffeomorphism h : X → M such that
h∗(G) = H1

alg(X, Z2).
In general, let N be any smooth manifold of dimension n. Then M = N�RP

n has
a class w ∈ H1(M, Z2) such that wn is a generator of Hn(M, Z2) and hence by the
above paragraph there exists an algebraic model X of M such that w ∈ H1

alg(X, Z2)
with wn a generator of Hn(X, Z2).

2. Proofs

All real algebraic varieties under consideration in this report are nonsingular. It
is well known that real projective varieties are affine (cf. Proposition 2.4.1 [1] or
Theorem 3.4.4 [2]). Moreover, compact affine real algebraic varieties are projective
(cf. Corollary 2.5.14 [1]), and therefore we do not distinguish between real compact
affine varieties and real projective varieties.

For real algebraic varieties X ⊆ Rr and Y ⊆ Rs, a map F : X → Y is said
to be entire rational if there exist fi, gi ∈ R[x1, . . . , xr], i = 1, . . . , s, such that
each gi vanishes nowhere on X and F = (f1/g1, . . . , fs/gs). We say X and Y are
isomorphic if there are entire rational maps F : X → Y and G : Y → X such that
F ◦ G = idY and G ◦ F = idX . Isomorphic algebraic varieties will be regarded as
the same.
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An algebraic homology group Halg
k (X, R) (R = Z or Z2) is defined as the sub-

group of Hk(X, R) generated by the compact real algebraic subsets of X. Define
H∗

alg(X, R) to be the Poincaré dual of the groups Halg
∗ (X, R) where it is defined.

For a compact nonsingular affine real algebraic variety X, H2k
C−alg(X, Z), con-

sisting of the elements which are the restriction of the classes in H2k(XC, Z) via the
projective nonsingular complexification map j : X → XC whose Poincaré dual is
represented by complex algebraic cycles is defined to be the subgroup of H2k(X, Z)
[4]. We refer the reader for the basic definitions and facts about real algebraic
geometry to [1, 2].

First we have a purely topological result.

Lemma 2.1. Let M be a smooth closed orientable manifold of dimension 2n and
f : M → S2n be any smooth map. Then there is a smooth map f̃ : M → CP

n such
that the diagram

CP
n

f̃↗ ↓ π

M
f→ S2n

commutes up to homotopy if and only if there is a cohomology class u ∈ H2(M, Z)
such that un = f∗(α), where α ∈ H2n(S2n, Z) is a generator.

Proof of Lemma 2.1. By the Hopf classification theorem there is a continuous de-
gree one map π : CP

n → S2n (cf. Theorem 11.6, p. 300 [8]). Next, assume that
such an f̃ exists. Then,

f∗(α) = (π ◦ f̃)∗(α)

= (f̃∗ ◦ π∗)(α)

= f̃∗(an) (π is a degree one map)

= (f̃∗(a))n

= un;

here a ∈ H2(CP
n, Z) is a generator and u = f̃∗(a). So, one side has been proved.

Conversely, assume that there is a cohomology class u ∈ H2(M, Z) in the form
of un = f∗(α). Let f̃ : M → CP

∞, which is the Eilenberg-Mac Lane space K(Z, 2),
be a map such that f̃∗(a) = u, where a ∈ H2(CP

∞, Z) is a generator. Since M

is 2n-dimensional, we can change f̃ by a homotopy so that f̃(M) ⊆ CP
n ⊆ CP

∞,
where CP

n is the 2n-th skeleton of CP
∞. Now we can assume that f̃ : M → CP

n is
a map such that f̃∗(a) = u. Then, (f̃∗(a))n = un, where an ∈ H2n(CP

n, Z). Since
an = π∗(α), we get

(π ◦ f̃)∗(α) = f̃∗(π∗(α))
= un

= f∗(α).

Thus, π ◦ f̃ and f have the same degree and hence π ◦ f̃ and f are homotopic. �

Proof of Theorem 1.1. By Lemma 2.1, there is a map f̃ : X → CP
n such that π ◦ f̃

is homotopic to f . The pull-back complex line bundle f̃∗(γn,1), where (γn,1) → CP
n

is the canonical line bundle over CP
n, is strongly algebraic because its Chern class,

c1(f̃∗(γn,1)) = u, is in H2
C−alg(X, Z) (cf. Remark 5.4 [4]). Now by Theorem 13.3.1
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of [2] the map f̃ classifying the pull-back bundle can be homotoped to an entire
rational map. �

Proof of Theorem 1.2. Since π : CP
n → S2n has degree one we have π∗(α) =

an, where a ∈ H2(CP
n, Z) is a generator. It is well known that H2(CP

n, Z) =
H2

C−alg(CP
n, Z). Now, let u = f̃∗(a). Then, u ∈ H2

C−alg(X, Z) because f̃ is an
entire rational map. By assumption, π ◦ f̃ is homotopic to f and hence we get

f∗(α) = (f̃)∗π∗(α) = f̃∗(an) = (f̃∗(a))∗ = un. �

Next we give a similar proof for Theorem 1.3 using the real projective space
instead of the complex projective space. Let π : RP

n → Sn be an entire rational
map defined by

π([x0 : ... : xn]) = ‖x‖−2(2x0xn, ..., 2xn−1xn, (
∑n−1

i=0 x2
i ) − x2

n).

Then the following diagram commutes:

RP
n π→ Sn

ϕ ↑ ↑ i

Rn φ−1

→ Sn − (N),

where N = (0, 0, ..., 1) is the north pole of Sn, φ is the stereographic projection, ϕ
is the embedding defined by ϕ(x1, ..., xn) = [x1 : ... : xn : 1], and i is the inclusion
map. We may consider π as an extension of φ−1 so that deg(π) = 1, where we
consider the Z2 degree when n is even.

Lemma 2.2. Let Mn be a nonorientable manifold and f : Mn → Sn be a contin-
uous map. Then there is a continuous map f̃ : Mn → RP

n such that the diagram

RP
n

f̃↗ ↓ π

Mn f→ Sn

commutes up to homotopy if and only if there is a cohomology class v ∈ H1(M, Z2)
such that vn = f∗(α), where α ∈ Hn(Sn, Z2) is a generator.

Proof of Lemma 2.2. Assume that there exists an f̃ . Then,

f∗(α) = (π ◦ f̃)∗(α)

= (f̃∗ ◦ π∗)(α)

= f̃∗(an) (π is a degree one map)

= (f̃∗(a))n

= vn;

here a ∈ H1(RP
n, Z2) is a generator and v = f̃∗(a).

Conversely, assume that v ∈ H1(Mn, Z2) such that vn = f∗(α). Let f̃ : Mn →
RP

∞ = K(Z2, 1) be a map such that f̃∗(a) = v, where a ∈ H1(RP
∞, Z2) is a

generator. Since Mn is n-dimensional, we can change f̃ by a homotopy so that
f̃(Mn) ⊆ RP

n ⊆ RP
∞, where RP

n is the n-th skeleton of RP
∞. Now we assume

that f̃ : Mn → RP
n is a map such that f̃∗(a) = v, where we can assume a ∈
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H1(RP
n, Z2). Then, (f̃∗(a))n = vn. Since an = π∗(α), we get

(π ◦ f̃)∗(α) = f̃∗(π∗(α))
= vn

= f∗(α).

Thus, we get that π◦f̃ and f have the same Z2 degree and thus they are homotopic.
�

Proof of Theorem 1.3. By Lemma 2.2, there is an f̃ : X → RP
n such that π ◦ f̃

is homotopic to f . The pull-back real line bundle f̃∗(γn,1), where (γn,1) → RP
n

is the canonical line bundle over RP
n, is strongly algebraic because its Stiefel-

Whitney class w1(f̃∗(γn,1)) = v is in H1
alg(X, Z2) (cf. Theorem 12.4.5 [2]). Now by

Theorem 13.3.1 of [2], the map f̃ classifying the pull-back bundle can be homotoped
to an entire rational map. �
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