A STEADY-STATE EXTERIOR NAVIER-STOKES PROBLEM THAT IS NOT WELL-POSED

GIOVANNI P. GALDI

(Communicated by Walter Craig)

Abstract. We prove that the exterior Navier-Stokes problem with zero velocity at infinity is not well-posed in homogeneous Sobolev spaces. This result complements and clarifies well-known previous results obtained by various authors.

1. Introduction

Let Ω be the complement of the closure of a bounded domain, Ω_0, of \mathbb{R}^3 of class C^2. The objective of this paper is to investigate the well-posedness of the following Navier-Stokes boundary value problem:

\[
\begin{align*}
-\nu \Delta u + u \cdot \nabla u &= -\nabla p + f, \\
\text{div } u &= 0,
\end{align*}
\]

in Ω, $\nabla u = 0$ at $\partial \Omega$, and $\lim_{|x| \to \infty} u(x) = 0$.

In homogeneous Sobolev spaces. We recall that (1.1) governs the steady-state motion of a viscous liquid, L, in the exterior of the “rigid obstacle” Ω_0. In particular, u and p are velocity and pressure fields, respectively, and $\nu > 0$ is the (constant) kinematical viscosity of L, while f is the prescribed body force acting on L.

In order to describe our results, we denote by $D^{1,q}_0(\Omega)$, $1 < q < \infty$, the homogeneous Sobolev space defined as the completion of smooth vector functions with compact support in Ω, $C^\infty(\Omega)$, in the Dirichlet norm $|\cdot|_{1,q} := \left(\int_{\Omega} |\nabla \cdot |_{q}\right)^{1/q}$, and by $D^{-1,q'}_0(\Omega)$ its (strong) dual with corresponding norm $|\cdot|_{-1,q'}$ ($q' := q/(q-1)$); see, e.g. §II.5, §II.6. We also indicate by $D^{1,q}_{0,\sigma}(\Omega)$ the subspace of $D^{1,q}_0(\Omega)$ of solenoidal functions, v, namely, satisfying $\text{div } v = 0$ in Ω.

It is well known—basically, since the work of J. Leray [10]—that for each $f \in D^{-1,2}_0(\Omega)$, (1.1) has at least one solution (in the sense of distributions) $u \in D^{1,2}_{0,\sigma}(\Omega)$, with corresponding $p \in L^2(\omega)$, for an arbitrary bounded domain $\omega \subset \Omega$. Moreover,
if f is sufficiently smooth and decays “fast enough” at large distances, then u belongs also to $D_{0,\sigma}^{1,3/2}(\Omega)$, for all $q > 2$ [13, 14].

The interesting question that has attracted the attention of several mathematicians is the solvability of (1.1) in the class of those $u \in D_{0,\sigma}^{1,q}(\Omega) \cap D_{0,\sigma}^{1,2}(\Omega)$, when $q < 2$; see [3, 8, 2, 11, 9, 7]. The results proved in these papers are many-fold, and we would like to recall the most relevant. In the first place, because of the particular structure of the nonlinear term, $u \cdot \text{grad } u$, one has to restrict to the case $q = 3/2$. Furthermore, if $\Omega = \mathbb{R}^3$ (namely, $\Omega_0 = \emptyset$), then under the assumption $f \in D_{0,\sigma}^{1,3/2}(\mathbb{R}^3) \cap D_{0,\sigma}^{1,2}(\mathbb{R}^3)$ of “sufficiently small” magnitude, solutions do exist in the class where $u \in D_{0,\sigma}^{1,3/2}(\mathbb{R}^3) \cap D_{0,\sigma}^{1,2}(\mathbb{R}^3)$. By the standard theory on representation of functionals on homogeneous Sobolev spaces [3, Theorem III.5.2], it then follows that $p \in L^{3/2}(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$. In addition, these solutions are also unique and depend continuously upon the data. On the other side, if $\Omega_0 \neq \emptyset$, we have that, under the assumption $f \in D_{0,\sigma}^{1,3/2}(\Omega) \cap D_{0,\sigma}^{1,2}(\Omega) \equiv Y^*(\Omega)$, a solution $u \in D_{0,\sigma}^{1,3/2}(\Omega) \cap D_{0,\sigma}^{1,2}(\Omega) \equiv X_1(\Omega)$, with associated $p \in L^{3/2}(\Omega) \cap L^2(\Omega) \equiv X_2(\Omega)$, can exist only if u and f satisfy the nonlocal compatibility condition

$$\begin{align*}
0 &= \int_{\partial \Omega} [\nu(\text{grad } u + (\text{grad } u)^\top) - pI] \cdot n + \int_{\Omega} F \cdot n = -\mathcal{F}_1 - \mathcal{F}_2,
\end{align*}$$

in a distributional sense. In this equation, \top denotes transpose, I is the identity matrix, n is the unit outer normal to $\partial \Omega$, and $\text{div } F = f$.

The objective of this paper is to show that, in fact, if $\Omega_0 \neq \emptyset$, problem (1.1) is not well-posed in the space $X(\Omega) \equiv X_1(\Omega) \times X_2(\Omega)$. More precisely, we prove that if, for a certain $\mathcal{F} \in Y^*(\Omega)$, (1.1) has a solution $\{ \mathbf{u}, p \} \in X(\Omega)$, then in any arbitrary Y^*-neighborhood of \mathcal{F} we can find a “body force” f such that problem (1.1) has no solution $\{ \mathbf{u}, p \} \in X(\Omega)$; see Theorem 6.1. We obtain this result by using classical properties of nonlinear Fredholm maps with negative index, due to S. Smale [12], that we recall in the following section.

The physical interpretation of our result goes as follows. Because of (1.1), the obstacle Ω_0 is at rest. This implies that the total force, \mathcal{F}, acting on Ω_0 must vanish. In general, \mathcal{F} is the sum of three contributions: \mathcal{F}_1, due to the action of the liquid; \mathcal{F}_2, due to the body force acting on the liquid, and \mathcal{F}_3, representing the external force directly applied to Ω_0. Clearly, for any \mathcal{F}_1 and \mathcal{F}_2, we can always find \mathcal{F}_3 such that $\mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3 = 0$, so that Ω_0 is “kept in place”. However, condition (1.2) tells us that, in the class $X(\Omega)$, \mathcal{F}_3 is necessarily zero and, consequently, the obstacle Ω_0 must be kept in place only by the contribution due to the body force, f, acting on the liquid. Our result then states that forces f for which this happens are “rare”. Notice that, of course, the case $\Omega_0 = \emptyset$ does not present such a problem.

In conclusion, we wish to mention that, as shown in [6, 7], problem (1.1) is well-posed (for “small” f) in appropriate function spaces other than $X(\Omega)$, where condition (1.2) does not necessarily hold.

2. Some preliminary results

In this section we recall some standard properties of nonlinear Fredholm maps.

Let X and Z be separable Banach spaces, with norms $|| \cdot ||_X$ and $|| \cdot ||_Z$, respectively, and let M be a map defined on the whole X with range $R(M) \subset Z$. For $z \in Z$, we put $M(z) = \{ x \in X : M(x) = z \}$ (the solution set of the map M at z) and $N(M) := \{ x \in X : M(x) = 0 \}$ (the null set of the map M). Furthermore, we shall
write $M \in C^k(X,Z)$, k a nonnegative integer, if, at each $x \in X$, M has continuous derivatives, in the sense of Fréchet, up to the order k included. The derivative of M at x is denoted by $M'(x)$.

A map $M \in C^1(X,Z)$ is said to be Fredholm if and only if the integers $\alpha := \dim N[M'(x)]$ and $\beta := \codim R[M'(x)]$ are both finite. The integer $\ind(M) := \alpha - \beta$ is then independent of the particular $x \in X$ [14, §5.15] and is called the index of M.

For a given $M \in C^1(X,Z)$, a point $x \in X$ is a regular point iff $M'(x)$ is surjective. A point $z \in Z$ is called a regular value iff either $\sigma_M(z) = \emptyset$ or $\sigma_M(z)$ is constituted only by regular points.

The following well-known result is due to Smale [12].

Lemma 2.1. Let $M \in C^k(X,Z)$ be a Fredholm map with $k > \max\{\ind(M),0\}$. Then, the set of regular values of M, R, is dense in Z. More specifically, $Z - R$ is of Baire first category.

An immediate, and fundamental to our aims, consequence of Lemma 2.1 is given by the following corollary, whose simple proof we include for the reader’s convenience.

Corollary 2.1. Suppose M satisfies the assumption of Lemma 2.1 and that, for some $\varphi \in Z$, $\sigma_M(\varphi) \neq \emptyset$. Then, if $\ind(M) < 0$, the problem $M(x) = z$ is not well-posed, in the sense that the solution x cannot depend continuously on the data z. Precisely, for any $\varepsilon > 0$, we can find $z \in Z$ such that $\|z - \varphi\|_Z < \varepsilon$ and the equation $M(x) = z$ has no solution.

Proof. For the given ε, by Lemma 2.1 we may choose z to be a regular value. Now, if we suppose, by contradiction, $\sigma_M(z) \neq \emptyset$, we would have that $M'(x)$ is surjective, for all $x \in \sigma_M(z)$, which would imply $\ind(M) = \dim N[M'(x)] \geq 0$, in contrast with the assumption. \hfill \square

An equivalent way of phrasing Corollary 2.1 is that, under the stated assumptions on M, the interior of $R(M)$ is empty.

3. Application to the exterior Navier-Stokes problem

We begin to rewrite [14] as a nonlinear equation in a suitable Banach space. We set $Y = Y(\Omega) := D_0^{1,3}(\Omega) + D_0^{1,2}(\Omega)$ equipped with the norm

$$
\|\varphi\|_Y := \inf \left\{ |\varphi_1|_{1,3} + |\varphi_2|_{1,2} : \varphi = \varphi_1 + \varphi_2, \varphi_1 \in D_0^{1,3}(\Omega), \varphi_2 \in D_0^{1,2}(\Omega) \right\}.
$$

Since both $D_0^{1,3}(\Omega)$ and $D_0^{1,2}(\Omega)$ are reflexive, it follows that for any $\varphi \in Y$ there exist $\varphi_1 \in D_0^{1,3}(\Omega)$ and $\varphi_2 \in D_0^{1,2}(\Omega)$ such that

$$
\|\varphi\|_Y = |\varphi_1|_{1,3} + |\varphi_2|_{1,2}.
$$

Also, since $\{ \varphi \in C_0^{\infty}(\Omega) : \div \varphi = 0 \}$ is dense in $D_0^{1,3}(\Omega) \cap D_0^{1,2}(\Omega)$ [3, Exercise III.6.2], we have that the (strong) dual, Y^*, of Y can be isomorphically represented as $Y^* = D_0^{-1,3/2}(\Omega) \cap D_0^{-1,2}(\Omega)$ with associated norm $\|\cdot\|_{Y^*} := \|\cdot\|_{1,3/2} + |\cdot|_{1,2}$; see [1]. Moreover, Y^* is separable [3, Exercise II.5.1].

If we now multiply, formally, (1.1) by $\varphi \in Y$ and integrate by parts over Ω, we find:

$$
\nu(\grad u, \grad \varphi) - (p, \div \varphi) - (u \cdot \grad \varphi, u) = \langle f, \varphi \rangle,
$$

where $\nu \in L^2(\Omega)$ is a viscosity coefficient.
where (\cdot, \cdot) and (\cdot, \cdot) represent the L^2-scalar product and duality pairing between Y^* and Y, respectively. Set
\[
X_1 = X_1(\Omega) := D^{1,3/2}_0(\Omega) \cap D^{1,2}_0(\Omega), \quad \| \cdot \|_{X_1} := \| \cdot \|_{1,3/2} + \| \cdot \|_{1,2} \\
X_2 = X_2(\Omega) := L^{3/2}(\Omega) \cap L^2(\Omega), \quad \| \cdot \|_{X_2} := \| \cdot \|_{3/2} + \| \cdot \|_{2} \\
X = X(\Omega) := X_1 \times X_2, \quad \| (u,p) \|_X := \| u \|_{X_1} + \| p \|_{X_2}.
\]
The space X is separable [3, Exercise II.5.1]. Because of the continuous embeddings
\begin{equation}
D^{1,3/2}_0(\Omega) \subset L^3(\Omega), \quad D^{1,2}_0(\Omega) \subset L^6(\Omega)
\end{equation}
(see [3, Theorem II.5.1]), it is immediately checked (by the Hölder inequality) that, for any $(u, p) \in X$, the left-hand side of (3.2) defines two linear functionals, $A(u, p)$ (Stokes operator) and $M(u)$, on Y as follows:
\begin{equation}
(A(u, p), \varphi) := \nu(\text{grad } u, \text{grad } \varphi) - (p, \text{div } \varphi), \quad (M(u), \varphi) := -(u \cdot \text{grad } \varphi, u).
\end{equation}
Therefore, (3.2) can be rewritten in the following operator equation form:
\begin{equation}
N(u, p) = f \quad \text{in } Y^*,
\end{equation}
where the map N is defined as
\[
N : \{ u, p \} \in X \mapsto A(u, p) + M(u) \in Y^*.
\]
Set $B_a(y) := \{ f \in Y^* : \| f - y \|_{Y^*} < a \}$, $a > 0$. We have the following.

Theorem 3.1. Let $\Omega_0 \neq \emptyset$. Assume that (3.5) has a solution $(\overline{\bm{u}}, \overline{\bm{\tau}}) \in X$ corresponding to some $\overline{f} \in Y^*$. Then, for any $\varepsilon > 0$, there exists $f \in B_\varepsilon(\overline{f})$ such that (3.3) does not have a solution.

Proof. In view of Corollary 2.1, it suffices to show that N is a Fredholm map of negative index. In order to reach this goal, we begin to observe that $N \in C^1(X, Y)$ and that
\[
[N'(u, p)](w, \tau) = A(w, \tau) + [M'(u)](w),
\]
where
\begin{equation}
([M'(u)](w), \varphi) = -(u \cdot \text{grad } \varphi, w) - (w \cdot \text{grad } \varphi, u), \quad \varphi \in Y.
\end{equation}
(The proof of these properties is completely standard, and, therefore, it will be omitted.) We prove, next, that $M'(u)$ is compact at each $u \in X_1$. Let $\{ w_m \}$ be a sequence in X_1 such that
\begin{equation}
\| w_m \|_{X_1} \leq M_1,
\end{equation}
where M_1 is independent of the integer m. Since $D^{1,3/2}_0(\Omega)$ and $D^{1,2}_0(\Omega)$ are reflexive, we can select a subsequence (again denoted by $\{ w_m \}$) and find $w \in X_1$ such that
\begin{equation}
w_m \rightharpoonup w \quad \text{weakly in } D^{1,3/2}_0(\Omega) \quad \text{and in } D^{1,2}_0(\Omega).
\end{equation}
From (3.6) we find that
\begin{equation}
([M'(u)](v_m), \varphi) = -(u \cdot \text{grad } \varphi, v_m) - (v_m \cdot \text{grad } \varphi, u), \quad \varphi \in Y,
\end{equation}
where $v_m := w - w_m$. For sufficiently large $R > 0$, we set $\Omega_R = \Omega \cap \{|x| < R\}$, $\Omega^R = \Omega \cap \{|x| > R\}$ and denote by $\| \cdot \|_{r,A}$ the $L^r(A)$-norm. Recalling that...
\(\varphi = \varphi_1 + \varphi_2 \), where \(\varphi_i, i = 1, 2 \), satisfy (3.1), with the help of the Hölder inequality we find

\[
|(u \cdot \text{grad} \varphi_1, v_m)| \leq \|u\|_3 \|v_m\|_3,\Omega \|\varphi_1\|_{1,3} + \|u\|_{3,\Omega^N} \|v_m\|_{3,\Omega^N} |\varphi_1|_{1,3}
\]

(3.10)

\[
|u \cdot \text{grad} \varphi_2, v_m| \leq \|u\|_6 \|v_m\|_{3,\Omega^N} |\varphi_2|_{1,2} + \|u\|_{6,\Omega^N} \|v_m\|_{3,\Omega^N} |\varphi_2|_{1,2}
\]

and (3.10) follows. □

Remark 3.1. The assumption, in Theorem 5.3, that \(\Omega_0 \neq \emptyset \) is crucial. In fact, if \(\Omega = \mathbb{R}^3 \), then ind \((A) = 0 \) [3, Theorem IV.2.2], and so, by the same argument used.
in the proof of Theorem [3.1] we can show that \(\text{ind} (N) = 0 \). This is consistent with the results of [8] that prove (local) well-posedness of problem (1.1) in the space \(D^{1,3/2}_{0,\sigma} (\mathbb{R}^3) \cap D^{1,2}_{0,\sigma} (\mathbb{R}^3) \).

References

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

E-mail address: galdi@engr.pitt.edu