## Products of Cesàro convergent sequences with applications to convex solid sets and integral operators

HTML articles powered by AMS MathViewer

- by Anton R. Schep
- Proc. Amer. Math. Soc.
**137**(2009), 579-584 - DOI: https://doi.org/10.1090/S0002-9939-08-09662-7
- Published electronically: August 19, 2008
- PDF | Request permission

## Abstract:

Let $0\le a_{n}, b_{n}, c_{n}$ such that $a_{n}=b_{n}c_{n}$. If $a=\lim _{n\to \infty }a_{n}$, and $\{b_{n}\}$ and $\{c_{n}\}$ Cesàro converge to $b$, respectively $c$, then $a\le bc$. This implies that if in addition $\{b_{n}\}$ and $\{c_{n}\}$ are similarly ordered, then $a=bc$. As applications we prove that the pointwise product of two convex solid sets closed in measure is again closed in measure and a factorization result for kernels of regular integral operators on $L_{p}$–spaces.## References

- M. A. Akcoglu, J. R. Baxter, and W. M. F. Lee,
*Representation of positive operators and alternating sequences*, Adv. Math.**87**(1991), no. 2, 249–290. MR**1112627**, DOI 10.1016/0001-8708(91)90073-G - G. H. Hardy, J. E. Littlewood, and G. Pólya,
*Inequalities*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR**944909** - Ralph Howard and Anton R. Schep,
*Norms of positive operators on $L^p$-spaces*, Proc. Amer. Math. Soc.**109**(1990), no. 1, 135–146. MR**1000156**, DOI 10.1090/S0002-9939-1990-1000156-X - J. Komlós,
*A generalization of a problem of Steinhaus*, Acta Math. Acad. Sci. Hungar.**18**(1967), 217–229. MR**210177**, DOI 10.1007/BF02020976 - Gilles Pisier,
*Complex interpolation and regular operators between Banach lattices*, Arch. Math. (Basel)**62**(1994), no. 3, 261–269. MR**1259842**, DOI 10.1007/BF01261367 - Anton R. Schep,
*Convex solid subsets of $L_0(X,\mu )$*, Positivity**9**(2005), no. 3, 491–499. MR**2188533**, DOI 10.1007/s11117-005-3188-7 - Anton R. Schep,
*Positive operators on $L^p$-spaces*, Positivity, Trends Math., Birkhäuser, Basel, 2007, pp. 229–254. MR**2382220**, DOI 10.1007/978-3-7643-8478-4_{8} - Joachim Weidmann,
*Linear operators in Hilbert spaces*, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR**566954** - Adriaan Cornelis Zaanen,
*Integration*, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR**0222234** - A. C. Zaanen,
*Riesz spaces. II*, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 1983. MR**704021**

## Bibliographic Information

**Anton R. Schep**- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- MR Author ID: 155835
- Email: schep@math.sc.edu
- Received by editor(s): January 23, 2008
- Published electronically: August 19, 2008
- Communicated by: Nigel J. Kalton
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 579-584 - MSC (2000): Primary 40G05, 46E30, 47B34
- DOI: https://doi.org/10.1090/S0002-9939-08-09662-7
- MathSciNet review: 2448578