Center type performance of differentiable vector fields in the plane
HTML articles powered by AMS MathViewer
- by Roland Rabanal
- Proc. Amer. Math. Soc. 137 (2009), 653-662
- DOI: https://doi.org/10.1090/S0002-9939-08-09686-X
- Published electronically: September 10, 2008
- PDF | Request permission
Abstract:
Suppose that $X$ is a planar vector field whose linearization outside some compact set is nonsingular and has pure imaginary spectrum. Then by adding to $X$ a constant vector, one obtains center behavior at infinity: the flow is conjugate to a rotation flow outside some compact set.References
- Begoña Alarcón, Víctor Guíñez, and Carlos Gutierrez, Hopf bifurcation at infinity for planar vector fields, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 247–258. MR 2257430, DOI 10.3934/dcds.2007.17.247
- M. Berthier, D. Cerveau, and A. Lins Neto, Sur les feuilletages analytiques réels et le problème du centre, J. Differential Equations 131 (1996), no. 2, 244–266 (French). MR 1419014, DOI 10.1006/jdeq.1996.0163
- A. V. Černavskiĭ, Addendum to the paper “Finite-to-one open mappings of manifolds”, Mat. Sb. (N.S.) 66 (108) (1965), 471–472 (Russian). MR 0220254
- Anna Cima, Arno van den Essen, Armengol Gasull, Engelbert Hubbers, and Francesc Mañosas, A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math. 131 (1997), no. 2, 453–457. MR 1483974, DOI 10.1006/aima.1997.1673
- F. Dumortier, R. Roussarie, J. Sotomayor, and H. Żołądek, Bifurcations of planar vector fields, Lecture Notes in Mathematics, vol. 1480, Springer-Verlag, Berlin, 1991. Nilpotent singularities and Abelian integrals. MR 1166189, DOI 10.1007/BFb0098353
- Alexandre Fernandes, Carlos Gutierrez, and Roland Rabanal, Global asymptotic stability for differentiable vector fields of $\Bbb R^2$, J. Differential Equations 206 (2004), no. 2, 470–482. MR 2096702, DOI 10.1016/j.jde.2004.04.015
- Armengol Gasull, Jaume Llibre, Víctor Mañosa, and Francesc Mañosas, The focus-centre problem for a type of degenerate system, Nonlinearity 13 (2000), no. 3, 699–729. MR 1758996, DOI 10.1088/0951-7715/13/3/311
- Lubomir Gavrilov, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity 10 (1997), no. 2, 433–448. MR 1438261, DOI 10.1088/0951-7715/10/2/008
- Robert Feßler, A proof of the two-dimensional Markus-Yamabe stability conjecture and a generalization, Ann. Polon. Math. 62 (1995), no. 1, 45–74. MR 1348217, DOI 10.4064/ap-62-1-45-74
- Carlos Gutierrez, Benito Pires, and Roland Rabanal, Asymptotic stability at infinity for differentiable vector fields of the plane, J. Differential Equations 231 (2006), no. 1, 165–181. MR 2287882, DOI 10.1016/j.jde.2006.07.025
- Carlos Gutierrez and Roland Rabanal, Injectivity of differentiable maps $\Bbb R^2\to \Bbb R^2$ at infinity, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 2, 217–239. MR 2266382, DOI 10.1007/s00574-006-0011-4
- Carlos Gutierrez and Alberto Sarmiento, Injectivity of $C^1$ maps $\Bbb R^2\to \Bbb R^2$ at infinity and planar vector fields, Astérisque 287 (2003), xviii, 89–102 (English, with English and French summaries). Geometric methods in dynamics. II. MR 2040002
- Carlos Gutiérrez and Marco Antonio Teixeira, Asymptotic stability at infinity of planar vector fields, Bol. Soc. Brasil. Mat. (N.S.) 26 (1995), no. 1, 57–66. MR 1339178, DOI 10.1007/BF01234626
- Philip Hartman, Ordinary differential equations, Classics in Applied Mathematics, vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)]; With a foreword by Peter Bates. MR 1929104, DOI 10.1137/1.9780898719222
- Xavier Jarque and Zbigniew Nitecki, Hamiltonian stability in the plane, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 775–799. MR 1764927, DOI 10.1017/S0143385700000419
- Robert Moussu, Symétrie et forme normale des centres et foyers dégénérés, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 241–251 (1983) (French, with English summary). MR 693979, DOI 10.1017/s0143385700001553
- Czesław Olech, On the global stability of an autonomous system on the plane, Contributions to Differential Equations 1 (1963), 389–400. MR 147734
- Washek F. Pfeffer, Derivation and integration, Cambridge Tracts in Mathematics, vol. 140, Cambridge University Press, Cambridge, 2001. MR 1816996, DOI 10.1017/CBO9780511574764
- Sorin Rădulescu and Marius Rădulescu, Local inversion theorems without assuming continuous differentiability, J. Math. Anal. Appl. 138 (1989), no. 2, 581–590. MR 991045, DOI 10.1016/0022-247X(89)90312-0
- R. Roussarie: Bifurcation of planar vector fields and Hilbert’s sixteenth problem. Progr. Math. 164, Birkhäuser Verlag, Basel, 1998.
- Floris Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 47–100. MR 339292
Bibliographic Information
- Roland Rabanal
- Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- MR Author ID: 745310
- ORCID: 0000-0003-0622-1878
- Email: rrabanal@ictp.it
- Received by editor(s): February 11, 2008
- Published electronically: September 10, 2008
- Communicated by: Bryna Kra
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 653-662
- MSC (2000): Primary 34C25; Secondary 34A99
- DOI: https://doi.org/10.1090/S0002-9939-08-09686-X
- MathSciNet review: 2448587
Dedicated: Dedicato a Lê Dũng Tráng per il suo sessantesimo compleanno