The Weil-Petersson geometry of the moduli space of Riemann surfaces
HTML articles powered by AMS MathViewer
- by Lee-Peng Teo
- Proc. Amer. Math. Soc. 137 (2009), 541-552
- DOI: https://doi.org/10.1090/S0002-9939-08-09692-5
- Published electronically: September 17, 2008
- PDF | Request permission
Abstract:
In 2007, Z. Huang showed that in the thick part of the moduli space $\mathcal {M}_g$ of compact Riemann surfaces of genus $g$, the sectional curvature of the Weil–Petersson metric is bounded below by a constant depending on the injectivity radius, but independent of the genus $g$. In this article, we prove this result by a different method. We also show that the same result holds for Ricci curvature. For the universal Teichmüller space equipped with a Hilbert structure induced by the Weil–Petersson metric, we prove that its sectional curvature is bounded below by a universal constant.References
- Lars V. Ahlfors, Curvature properties of Teichmüller’s space, J. Analyse Math. 9 (1961/62), 161–176. MR 136730, DOI 10.1007/BF02795342
- S. Bochner, Curvature in Hermitian metric, Bull. Amer. Math. Soc. 53 (1947), 179–195. MR 19983, DOI 10.1090/S0002-9904-1947-08778-4
- Zheng Huang, Asymptotic flatness of the Weil-Petersson metric on Teichmüller space, Geom. Dedicata 110 (2005), 81–102. MR 2136021, DOI 10.1007/s10711-003-0816-x
- Zheng Huang, The Weil-Petersson geometry on the thick part of the moduli space of Riemann surfaces, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3309–3316. MR 2322763, DOI 10.1090/S0002-9939-07-08868-5
- Zheng Huang, On asymptotic Weil-Petersson geometry of Teichmüller space of Riemann surfaces, Asian J. Math. 11 (2007), no. 3, 459–484. MR 2372726, DOI 10.4310/AJM.2007.v11.n3.a5
- Jürgen Jost, Harmonic maps and curvature computations in Teichmüller theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 1, 13–46. MR 1127695, DOI 10.5186/aasfm.1991.1613
- Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. I, J. Differential Geom. 68 (2004), no. 3, 571–637. MR 2144543
- Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. II, J. Differential Geom. 69 (2005), no. 1, 163–216. MR 2169586
- Curtis T. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. (2) 151 (2000), no. 1, 327–357. MR 1745010, DOI 10.2307/121120
- H. L. Royden, Intrinsic metrics on Teichmüller space, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 217–221. MR 0447636
- Georg Schumacher, Harmonic maps of the moduli space of compact Riemann surfaces, Math. Ann. 275 (1986), no. 3, 455–466. MR 858289, DOI 10.1007/BF01458616
- Leon A. Takhtajan and Lee-Peng Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861, viii+119. MR 2251887, DOI 10.1090/memo/0861
- Stefano Trapani, On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford compactification of the moduli space of Riemann surfaces, Math. Ann. 293 (1992), no. 4, 681–705. MR 1176026, DOI 10.1007/BF01444740
- A. J. Tromba, On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric, Manuscripta Math. 56 (1986), no. 4, 475–497. MR 860734, DOI 10.1007/BF01168506
- P. M. H. Wilson, Sectional curvatures of Kähler moduli, Math. Ann. 330 (2004), no. 4, 631–664. MR 2102306, DOI 10.1007/s00208-004-0563-9
- Scott A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), no. 1, 119–145. MR 842050, DOI 10.1007/BF01388794
- Scott A. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 357–393. MR 2039996, DOI 10.4310/SDG.2003.v8.n1.a13
- Sumio Yamada, On the geometry of Weil-Petersson completion of Teichmüller spaces, Math. Res. Lett. 11 (2004), no. 2-3, 327–344. MR 2067477, DOI 10.4310/MRL.2004.v11.n3.a5
Bibliographic Information
- Lee-Peng Teo
- Affiliation: Faculty of Information Technology, Multimedia University, Jalan Multimedia,Cyberjaya, 63100, Selangor Darul Ehsan, Malaysia
- Email: lpteo@mmu.edu.my
- Received by editor(s): December 20, 2007
- Published electronically: September 17, 2008
- Additional Notes: The author would like to thank the Ministry of Science, Technology and Innovation of Malaysia for funding this project under eScienceFund 06-02-01-SF0021.
- Communicated by: Richard A. Wentworth
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 541-552
- MSC (2000): Primary 30F60, 32G15
- DOI: https://doi.org/10.1090/S0002-9939-08-09692-5
- MathSciNet review: 2448574