An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions
HTML articles powered by AMS MathViewer
- by James Kennedy
- Proc. Amer. Math. Soc. 137 (2009), 627-633
- DOI: https://doi.org/10.1090/S0002-9939-08-09704-9
- Published electronically: October 8, 2008
- PDF | Request permission
Abstract:
We prove that the second eigenvalue of the Laplacian with Robin boundary conditions is minimized among all bounded Lipschitz domains of fixed volume by the domain consisting of the disjoint union of two balls of equal volume.References
- Marie-Hélène Bossel, Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 1, 47–50 (French, with English summary). MR 827106
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), no. 1, 86–132. MR 1458457, DOI 10.1006/jdeq.1997.3256
- Daniel Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann. 335 (2006), no. 4, 767–785. MR 2232016, DOI 10.1007/s00208-006-0753-8
- Daniel Daners, Robin boundary value problems on arbitrary domains, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4207–4236. MR 1650081, DOI 10.1090/S0002-9947-00-02444-2
- Daniel Daners and James Kennedy, Uniqueness in the Faber-Krahn inequality for Robin problems, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1191–1207. MR 2368899, DOI 10.1137/060675629
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Antoine Henrot, Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ. 3 (2003), no. 3, 443–461. Dedicated to Philippe Bénilan. MR 2019029, DOI 10.1007/s00028-003-0111-0
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- A. A. Lacey, J. R. Ockendon, and J. Sabina, Multidimensional reaction diffusion equations with nonlinear boundary conditions, SIAM J. Appl. Math. 58 (1998), no. 5, 1622–1647. MR 1637882, DOI 10.1137/S0036139996308121
- Shape Analysis for Eigenvalues. Abstracts from the workshop held April 8–14, 2007. Organised by D. Bucur, G. Buttazzo and A. Henrot, Oberwolfach Reports, vol. 4, no. 2 (2007), 995–1026.
- Mahamadi Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains, Semigroup Forum 73 (2006), no. 1, 10–30. MR 2277314, DOI 10.1007/s00233-006-0617-2
Bibliographic Information
- James Kennedy
- Affiliation: School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
- Email: J.Kennedy@maths.usyd.edu.au
- Received by editor(s): January 30, 2008
- Published electronically: October 8, 2008
- Communicated by: Matthew J. Gursky
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 627-633
- MSC (2000): Primary 35P15, 35J25
- DOI: https://doi.org/10.1090/S0002-9939-08-09704-9
- MathSciNet review: 2448584