Representations of the generalized Kronecker quiver with countably many arrows
HTML articles powered by AMS MathViewer
- by Nils Mahrt
- Proc. Amer. Math. Soc. 137 (2009), 815-824
- DOI: https://doi.org/10.1090/S0002-9939-08-09552-X
- Published electronically: September 10, 2008
- PDF | Request permission
Abstract:
Let $Q$ be the generalized Kronecker quiver with countably many arrows and let $k$ be a field. We prove that the category of representations of $Q$ over $k$ has no right almost split morphism whose domain is projective. More precisely, we show that any indecomposable non-projective representation is the image of an epimorphism whose domain has no non-zero projective direct summand. This result does not hold for any finite subquiver of $Q$.References
- Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. MR 2197389, DOI 10.1017/CBO9780511614309
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- D. J. Benson, Representations and cohomology. I, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. Basic representation theory of finite groups and associative algebras. MR 1644252
- Riccardo Colpi, Gabriella D’Este, and Alberto Tonolo, Quasi-tilting modules and counter equivalences, J. Algebra 191 (1997), no. 2, 461–494. MR 1448804, DOI 10.1006/jabr.1997.6873
- Gabriella D’Este, Free modules obtained by means of infinite direct products, Algebra and its applications (Athens, OH, 1999) Contemp. Math., vol. 259, Amer. Math. Soc., Providence, RI, 2000, pp. 161–173. MR 1778499, DOI 10.1090/conm/259/04092
- Edgar Enochs and Sergio Estrada, Projective representations of quivers, Comm. Algebra 33 (2005), no. 10, 3467–3478. MR 2175445, DOI 10.1081/AGB-200058181
- Edgar Enochs, Luis Oyonarte, and Blas Torrecillas, Flat covers and flat representations of quivers, Comm. Algebra 32 (2004), no. 4, 1319–1338. MR 2100360, DOI 10.1081/AGB-120028784
- Dieter Happel and Luise Unger, A family of infinite-dimensional non-self-extending bricks for wild hereditary algebras, Representations of finite-dimensional algebras (Tsukuba, 1990) CMS Conf. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 1991, pp. 181–189. MR 1143851, DOI 10.1016/0096-3003(91)90033-J
- Mark Hovey, Classifying subcategories of modules, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3181–3191. MR 1828603, DOI 10.1090/S0002-9947-01-02747-7
- Nils Mahrt, Darstellungen des verallgemeinerten Kronecker-Köchers mit abzählbar vielen Pfeilen, Diplomarbeit, Fakultät für Mathematik, Universität Bielefeld, July 2006.
- Claus Michael Ringel, Representations of $K$-species and bimodules, J. Algebra 41 (1976), no. 2, 269–302. MR 422350, DOI 10.1016/0021-8693(76)90184-8
Bibliographic Information
- Nils Mahrt
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
- Email: nmahrt@math.uni-bielefeld.de
- Received by editor(s): November 9, 2006
- Received by editor(s) in revised form: May 23, 2007, August 31, 2007, December 20, 2007, and February 18, 2008
- Published electronically: September 10, 2008
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 815-824
- MSC (2000): Primary 16G20; Secondary 16G70
- DOI: https://doi.org/10.1090/S0002-9939-08-09552-X
- MathSciNet review: 2457419