The Leray-Schauder condition for continuous pseudo-contractive mappings
HTML articles powered by AMS MathViewer
- by Claudio H. Morales
- Proc. Amer. Math. Soc. 137 (2009), 1013-1020
- DOI: https://doi.org/10.1090/S0002-9939-08-09570-1
- Published electronically: September 24, 2008
- PDF | Request permission
Abstract:
Over thirty years ago, Kirk raised the question of whether a nonexpansive mapping, defined on a convex domain with nonempty interior, has a fixed point under the Leray-Schauder condition, provided that its domain enjoys the Fixed Point Property with respect to nonexpansive self-mappings. In the present work we have found the answer to this question to be positive, even for a larger class of mappings. The result, indeed, represents a quite significant extension of a large number of theorems obtained in the last forty years. This also includes new theorems for nonexpansive mappings.References
- L. P. Belluce and W. A. Kirk, Fixed-point theorems for certain classes of nonexpansive mappings, Proc. Amer. Math. Soc. 20 (1969), 141–146. MR 233341, DOI 10.1090/S0002-9939-1969-0233341-4
- Felix E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272–1276. MR 178324, DOI 10.1073/pnas.53.6.1272
- Felix E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 232255, DOI 10.1090/S0002-9904-1967-11823-8
- Felix E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660–665. MR 230179, DOI 10.1090/S0002-9904-1968-11983-4
- Klaus Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374. MR 350538, DOI 10.1007/BF01171148
- Juan A. Gatica and W. A. Kirk, Fixed point theorems for Lipschitzian pseudo-contractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111–115. MR 306993, DOI 10.1090/S0002-9939-1972-0306993-8
- Juan A. Gatica and W. A. Kirk, Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mountain J. Math. 4 (1974), 69–79. Collection of articles on fixed point theory. MR 331136, DOI 10.1216/RMJ-1974-4-1-69
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- W. A. Kirk, Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions, Proc. Amer. Math. Soc. 50 (1975), 143–149. MR 380527, DOI 10.1090/S0002-9939-1975-0380527-7
- W. A. Kirk, On zeros of accretive operators in uniformly convex spaces, Boll. Un. Mat. Ital. A (5) 17 (1980), no. 2, 249–253 (English, with Italian summary). MR 578355
- W. A. Kirk and Rainald Schöneberg, Some results on pseudo-contractive mappings, Pacific J. Math. 71 (1977), no. 1, 89–100. MR 487615
- Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45–78 (French). MR 1509338
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414. MR 318991, DOI 10.1090/S0002-9947-1973-0318991-4
- C. Morales, Pseudocontractive mappings and the Leray-Schauder boundary condition, Comment. Math. Univ. Carolin. 20 (1979), no. 4, 745–756. MR 555187
- Claudio Morales, On the fixed-point theory for local $k$-pseudocontractions, Proc. Amer. Math. Soc. 81 (1981), no. 1, 71–74. MR 589138, DOI 10.1090/S0002-9939-1981-0589138-4
- Claudio Morales, Remarks on pseudocontractive mappings, J. Math. Anal. Appl. 87 (1982), no. 1, 158–164. MR 653612, DOI 10.1016/0022-247X(82)90159-7
- Claudio H. Morales and Simba A. Mutangadura, On the approximation of fixed points for locally pseudo-contractive mappings, Proc. Amer. Math. Soc. 123 (1995), no. 2, 417–423. MR 1216820, DOI 10.1090/S0002-9939-1995-1216820-8
- Roger D. Nussbaum, Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741–766. MR 306986, DOI 10.1016/0022-247X(72)90253-3
- Donal O’Regan and Radu Precup, Theorems of Leray-Schauder type and applications, Series in Mathematical Analysis and Applications, vol. 3, Gordon and Breach Science Publishers, Amsterdam, 2001. MR 1937722
- W. V. Petryshyn, Structure of the fixed points sets of $k$-set-contractions, Arch. Rational Mech. Anal. 40 (1970/71), 312–328. MR 273480, DOI 10.1007/BF00252680
- Simeon Reich, A remark on set-valued mappings that satisfy the Leray-Schauder condition, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 61 (1976), no. 3-4, 193–194 (1977) (English, with Italian summary). MR 477902
- J. Reinermann and R. Schöneberg, Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert-space, Fixed point theory and its applications (Proc. Sem., Dalhousie Univ., Halifax, N.S., 1975) Academic Press, New York, 1976, pp. 187–196. MR 0451052
- R. Schöneberg, Zeros of nonlinear monotone operators in Hilbert space, Canad. Math. Bull. 21 (1978), no. 2, 213–219. MR 500320, DOI 10.4153/CMB-1978-036-8
- Rainald Schöneberg, Leray-Schauder principles for condensing multivalued mappings in topological linear spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 268–270. MR 507320, DOI 10.1090/S0002-9939-1978-0507320-9
- J. R. L. Webb, A fixed point theorem and applications to functional equations in Banach spaces, Boll. Un. Mat. Ital. (4) 4 (1971), 775–788 (English, with Italian summary). MR 0377631
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Bibliographic Information
- Claudio H. Morales
- Affiliation: Department of Mathematics, University of Alabama in Huntsville, Huntsville,Alabama 35899
- Email: morales@math.uah.edu
- Received by editor(s): January 23, 2008
- Received by editor(s) in revised form: March 12, 2008
- Published electronically: September 24, 2008
- Communicated by: Nigel J. Kalton
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1013-1020
- MSC (2000): Primary 47H10; Secondary 65J15
- DOI: https://doi.org/10.1090/S0002-9939-08-09570-1
- MathSciNet review: 2457441