Rational homotopy of the polyhedral product functor
HTML articles powered by AMS MathViewer
- by Yves Félix and Daniel Tanré
- Proc. Amer. Math. Soc. 137 (2009), 891-898
- DOI: https://doi.org/10.1090/S0002-9939-08-09591-9
- Published electronically: September 24, 2008
- PDF | Request permission
Abstract:
Let $(X,\ast )$ be a pointed CW-complex, $K$ be a simplicial complex on $n$ vertices and $X^K$ be the associated polyhedral power. In this paper, we construct a Sullivan model of $X^K$ from $K$ and from a model of $X$.
Let $\mathcal {F}(K,X)$ be the homotopy fiber of the inclusion $X^K\to X^n$. Recent results of Grbić and Theriault, on one side, and of Denham and Suciu, on the other side, show the diversity of the possible homotopy types for $\mathcal {F}(K,X)$. Here, we prove that the corresponding map between Sullivan models is Golod attached, generalizing a result of J. Backelin. This property is deduced from the existence of a succession of fibrations whose fibers are suspensions.
We consider also the Lusternik-Schnirelmann category of $X^K$. In the case that $\operatorname {cat}X^n=n \operatorname {cat}X$, we prove that $\operatorname {cat}X^K =(\operatorname {cat}X)(1+\dim K)$.
Finally, we mention that this work is written in the case of a sequence of pairs, $\underline {X}=(X_i,A_i)_{1\leq i\leq n}$, as in a recent work of Bahri, Bendersky, Cohen and Gitler.
References
- Luchezar Avramov and Stephen Halperin, Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 1–27. MR 846435, DOI 10.1007/BFb0075446
- Luchezar L. Avramov, Golod homomorphisms, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 59–78. MR 846439, DOI 10.1007/BFb0075450
- Jörgen Backelin, Les anneaux locaux à relations monomiales ont des séries de Poincaré-Betti rationnelles, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 607–610 (French, with English summary). MR 686351
- Jörgen Backelin, Monomial ideal residue class rings and iterated Golod maps, Math. Scand. 53 (1983), no. 1, 16–24. MR 733934, DOI 10.7146/math.scand.a-12011
- A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, The polyhedral product functor: a method of computation for moment-angle complexes, arrangements and related spaces, 2007, arXiv: 0711.4689
- Israel Berstein, On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 129–134. MR 400212, DOI 10.1017/S0305004100052142
- Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, vol. 24, American Mathematical Society, Providence, RI, 2002. MR 1897064, DOI 10.1090/ulect/024
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417–451. MR 1104531, DOI 10.1215/S0012-7094-91-06217-4
- Graham Denham and Alexander I. Suciu, Moment-angle complexes, monomial ideals and Massey products, Pure Appl. Math. Q. 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson., 25–60. MR 2330154, DOI 10.4310/PAMQ.2007.v3.n1.a2
- Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1–38. MR 664027, DOI 10.1090/S0002-9947-1982-0664027-0
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Yves Félix and Daniel Tanré, Formalité d’une application et suite spectrale d’Eilenberg-Moore, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 99–123 (French). MR 952575, DOI 10.1007/BFb0077798
- Jelena Grbić and Stephen Theriault, The homotopy type of the complement of a coordinate subspace arrangement, Topology 46 (2007), no. 4, 357–396. MR 2321037, DOI 10.1016/j.top.2007.02.006
- Michael Mather, Pull-backs in homotopy theory, Canadian J. Math. 28 (1976), no. 2, 225–263. MR 402694, DOI 10.4153/CJM-1976-029-0
- Dietrich Notbohm and Nigel Ray, On Davis-Januszkiewicz homotopy types. I. Formality and rationalisation, Algebr. Geom. Topol. 5 (2005), 31–51. MR 2135544, DOI 10.2140/agt.2005.5.31
- Neil Strickland, Notes on toric spaces, preprint, 2002.
- Micheline Vigué-Poirrier, Formalité d’une application continue, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 16, A809–A812 (French, with English summary). MR 558804
Bibliographic Information
- Yves Félix
- Affiliation: Département de Mathématiques, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium
- Email: felix@math.ucl.ac.be
- Daniel Tanré
- Affiliation: Département de Mathematiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 205734
- Email: Daniel.Tanre@univ-lille1.fr
- Received by editor(s): January 22, 2008
- Received by editor(s) in revised form: March 21, 2008
- Published electronically: September 24, 2008
- Communicated by: Paul Goerss
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 891-898
- MSC (2000): Primary 13F55, 55P62, 55U10
- DOI: https://doi.org/10.1090/S0002-9939-08-09591-9
- MathSciNet review: 2457428