Abstract elementary classes induced by tilting and cotilting modules have finite character
HTML articles powered by AMS MathViewer
- by Jan Trlifaj
- Proc. Amer. Math. Soc. 137 (2009), 1127-1133
- DOI: https://doi.org/10.1090/S0002-9939-08-09618-4
- Published electronically: October 1, 2008
- PDF | Request permission
Abstract:
Let $R$ be a ring and $\mathcal C$ be a cotilting class of $R$–modules. Define $A \leq B$ by $A \subseteq B$ and $A, B, B/A \in \mathcal C$. Then $(\mathcal C, \leq )$ is an abstract elementary class of finite character. An analogous result holds for all abstract elementary classes induced by tilting modules.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- J. Baldwin, Categoricity, www.math.uic.edu/j̃baldwin.
- John T. Baldwin, Paul C. Eklof, and Jan Trlifaj, ${}^\perp N$ as an abstract elementary class, Ann. Pure Appl. Logic 149 (2007), no. 1-3, 25–39. MR 2364195, DOI 10.1016/j.apal.2007.06.003
- Silvana Bazzoni, Cotilting and tilting modules over Prüfer domains, Forum Math. 19 (2007), no. 6, 1005–1027. MR 2367952, DOI 10.1515/FORUM.2007.039
- S. Bazzoni, When are definable classes tilting and cotilting classes?, to appear in J. Algebra.
- Silvana Bazzoni and Jan Šťovíček, All tilting modules are of finite type, Proc. Amer. Math. Soc. 135 (2007), no. 12, 3771–3781. MR 2341926, DOI 10.1090/S0002-9939-07-08911-3
- William Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Algebras and modules, I (Trondheim, 1996) CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 29–54. MR 1648602
- Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006. MR 2251271, DOI 10.1515/9783110199727
- T. Hyttinen and M. Kesälä, Independence in finitary abstract elementary classes, Ann. Pure Appl. Logic 143 (2006), no. 1-3, 103–138. MR 2258625, DOI 10.1016/j.apal.2006.01.009
- D. W. Kueker, Abstract Elementary Classes and Infinitary Logics, preprint (2008).
- Mike Prest, Model theory and modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988. MR 933092, DOI 10.1017/CBO9780511600562
- Saharon Shelah, Classification of nonelementary classes. II. Abstract elementary classes, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 419–497. MR 1033034, DOI 10.1007/BFb0082243
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
- Jan Šťovíček, All $n$-cotilting modules are pure-injective, Proc. Amer. Math. Soc. 134 (2006), no. 7, 1891–1897. MR 2215116, DOI 10.1090/S0002-9939-06-08256-6
Bibliographic Information
- Jan Trlifaj
- Affiliation: Faculty of Mathematics and Physics, Department of Algebra, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic
- MR Author ID: 174420
- ORCID: 0000-0001-5773-8661
- Email: trlifaj@karlin.mff.cuni.cz
- Received by editor(s): December 14, 2007
- Received by editor(s) in revised form: April 15, 2008
- Published electronically: October 1, 2008
- Additional Notes: This research was supported by GAČR 201/06/0510 and MSM 0021620839
- Communicated by: Julia Knight
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1127-1133
- MSC (2000): Primary 03C95, 16E30; Secondary 03C60, 16D90
- DOI: https://doi.org/10.1090/S0002-9939-08-09618-4
- MathSciNet review: 2457454