Uniformly convex functions on Banach spaces
HTML articles powered by AMS MathViewer
- by J. Borwein, A. J. Guirao, P. Hájek and J. Vanderwerff
- Proc. Amer. Math. Soc. 137 (2009), 1081-1091
- DOI: https://doi.org/10.1090/S0002-9939-08-09630-5
- Published electronically: October 3, 2008
- PDF | Request permission
Abstract:
Given a Banach space ($X$,$\|\cdot \|$), we study the connection between uniformly convex functions $f:X \to \mathbb {R}$ bounded above by $\|\cdot \|^p$ and the existence of norms on $X$ with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function $f:X \to \mathbb {R}$ bounded above by $\|\cdot \|^2$ if and only if $X$ admits an equivalent norm with modulus of convexity of power type 2.References
- Dominique Azé and Jean-Paul Penot, Uniformly convex and uniformly smooth convex functions, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 4, 705–730 (English, with English and French summaries). MR 1623472
- Heinz H. Bauschke, Jonathan M. Borwein, and Patrick L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), no. 4, 615–647. MR 1869107, DOI 10.1142/S0219199701000524
- Dan Butnariu, Alfredo N. Iusem, and Elena Resmerita, Total convexity for powers of the norm in uniformly convex Banach spaces, J. Convex Anal. 7 (2000), no. 2, 319–334. MR 1811683
- Dan Butnariu, Alfredo N. Iusem, and Constantin Zălinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal. 10 (2003), no. 1, 35–61. MR 1999901
- Dan Butnariu and Elena Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. , posted on (2006), Art. ID 84919, 39. MR 2211675, DOI 10.1155/AAA/2006/84919
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- Jakub Duda, Libor Veselý, and Luděk Zajíček, On d.c. functions and mappings, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), no. 1, 111–138. MR 1993883
- T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), no. 2, 121–155. MR 425581, DOI 10.4064/sm-56-2-121-155
- V. I. Gurariĭ, Differential properties of the convexity moduli of Banach spaces, Mat. Issled. 2 (1967), no. vyp. 1, 141–148 (Russian). MR 0211245
- E. S. Levitin and B. T. Poljak, convergence of minimizing sequences in problems on the relative extremum, Dokl. Akad. Nauk SSSR 168 (1966), 997–1000 (Russian). MR 0199016
- Göte Nordlander, The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15–17 (1960). MR 140915, DOI 10.1007/BF02591317
- Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, Calif., 1981. MR 604364
- C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), no. 2, 344–374. MR 716088, DOI 10.1016/0022-247X(83)90112-9
- C. Zălinescu, Convex analysis in general vector spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1921556, DOI 10.1142/9789812777096
Bibliographic Information
- J. Borwein
- Affiliation: Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia B3H 1W5, Canada – and – School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Email: jonathan.borwein@newcastle.edu.au, jborwein@cs.dal.ca
- A. J. Guirao
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo (Murcia), Spain
- Email: ajguirao@um.es
- P. Hájek
- Affiliation: Mathematical Institute, AV ČR, Žitná 25, 115 67 Praha 1, Czech Republic
- Email: hajek@math.cas.cz
- J. Vanderwerff
- Affiliation: Department of Mathematics, La Sierra University, Riverside, California 92515
- Email: jvanderw@lasierra.edu
- Received by editor(s): March 16, 2007
- Received by editor(s) in revised form: April 26, 2008
- Published electronically: October 3, 2008
- Additional Notes: The first author’s research was supported by NSERC and the Canada Research Chair Program.
The second author’s research was supported by the grants MTM2005-08379 of MECD (Spain), 00690/PI/04 of Fundación Séneca (CARM, Spain) and AP2003-4453 of MECD (Spain).
The third author’s research was supported by the grants A100190502, IAA 100190801 and Inst. Research Plan AV0Z10190503. - Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1081-1091
- MSC (2000): Primary 52A41, 46G05, 46N10, 49J50, 90C25
- DOI: https://doi.org/10.1090/S0002-9939-08-09630-5
- MathSciNet review: 2457450