On spaces of operators on $C(Q)$ spaces ($Q$ countable metric space)
HTML articles powered by AMS MathViewer
- by Christian Samuel
- Proc. Amer. Math. Soc. 137 (2009), 965-970
- DOI: https://doi.org/10.1090/S0002-9939-08-09635-4
- Published electronically: September 11, 2008
- PDF | Request permission
Abstract:
In this paper we study spaces of nuclear operators ${\mathcal N}(C(Q))$ and spaces of compact operators ${\mathcal K}(C(Q))$ on spaces of continuous functions $C(Q),$ where $Q$ is a countable compact metric space, in connection with the C. Bessaga and A. Pełczyński isomorphic classification of these spaces.
We show that the spaces ${\mathcal K}(C(Q))$ [resp. ${\mathcal N}(C(Q))$] and ${\mathcal K}(C(Q’))$ [resp. ${\mathcal N}(C(Q’))$] are isomorphic if, and only if, $C(Q)$ and $C(Q’)$ are isomorphic. We show also that ${\mathcal N}(C(Q))$ is not isomorphic to a subspace of ${\mathcal K}(C(Q)).$
References
- C. Bessaga and A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53–62. MR 113132, DOI 10.4064/sm-19-1-53-62
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- William B. Johnson, On finite dimensional subspaces of Banach spaces with local unconditional structure, Studia Math. 51 (1974), 225–240. MR 358306, DOI 10.4064/sm-51-3-225-240
- S. Mazurkiewicz and W. Sierpiński, Contributions à la topologie des ensembles dénombrables, Fund. Math. (1) (1920), 17–27.
Bibliographic Information
- Christian Samuel
- Affiliation: Centre National de la Recherche Scientifique UMR 6632, Université d’Aix- Marseille 3, 13397 Marseille Cedex 20, France
- Email: christian.samuel@univ-cezanne.fr
- Received by editor(s): February 19, 2008
- Published electronically: September 11, 2008
- Communicated by: Nigel J. Kalton
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 965-970
- MSC (2000): Primary 46B03, 46B25; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-08-09635-4
- MathSciNet review: 2457436