Inclusions and coincidences for multiple summing multilinear mappings
HTML articles powered by AMS MathViewer
- by G. Botelho, H.-A. Braunss, H. Junek and D. Pellegrino
- Proc. Amer. Math. Soc. 137 (2009), 991-1000
- DOI: https://doi.org/10.1090/S0002-9939-08-09691-3
- Published electronically: October 8, 2008
- PDF | Request permission
Abstract:
Using complex interpolation we prove new inclusion and coincidence theorems for multiple (fully) summing multilinear and holomorphic mappings. Among several other results we show that continuous $n$-linear forms on cotype 2 spaces are multiple $(2;q_{k},...,q_{k})$-summing, where $2^{k-1}<n\leq 2^{k}$, $q_{0}=2$ and $q_{k+1}=\frac {2q_{k}}{1+q_{k}}$ for $k\geq 0.$References
- María D. Acosta, Domingo García, and Manuel Maestre, A multilinear Lindenstrauss theorem, J. Funct. Anal. 235 (2006), no. 1, 122–136. MR 2216442, DOI 10.1016/j.jfa.2005.10.002
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- Jacek Bochnak and Józef Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59–76. MR 313810, DOI 10.4064/sm-39-1-59-76
- H. F. Bohnenblust and Einar Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), no. 3, 600–622. MR 1503020, DOI 10.2307/1968255
- Fernando Bombal, David Pérez-García, and Ignacio Villanueva, Multilinear extensions of Grothendieck’s theorem, Q. J. Math. 55 (2004), no. 4, 441–450. MR 2104683, DOI 10.1093/qjmath/55.4.441
- Geraldo Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. Sect. A 97 (1997), no. 2, 145–153. MR 1645283
- G. Botelho, H.-A. Braunss, H. Junek, and D. Pellegrino, Holomorphy types and ideals of multilinear mappings, Studia Math. 177 (2006), no. 1, 43–65. MR 2283707, DOI 10.4064/sm177-1-4
- Geraldo Botelho and Daniel M. Pellegrino, Scalar-valued dominated polynomials on Banach spaces, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1743–1751. MR 2204287, DOI 10.1090/S0002-9939-05-08501-1
- Andreas Defant and Carsten Michels, A complex interpolation formula for tensor products of vector-valued Banach function spaces, Arch. Math. (Basel) 74 (2000), no. 6, 441–451. MR 1753543, DOI 10.1007/PL00000425
- Andreas Defant and David Pérez-García, A tensor norm preserving unconditionality for $\scr L_p$-spaces, Trans. Amer. Math. Soc. 360 (2008), no. 6, 3287–3306. MR 2379797, DOI 10.1090/S0002-9947-08-04428-0
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Verónica Dimant, Strongly $p$-summing multilinear operators, J. Math. Anal. Appl. 278 (2003), no. 1, 182–193. MR 1963473, DOI 10.1016/S0022-247X(02)00710-2
- Stefan Geiss, Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149–159 (German). MR 918674, DOI 10.1002/mana.19871340110
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- H. Jarchow, C. Palazuelos, D. Pérez-García, and I. Villanueva, Hahn-Banach extension of multilinear forms and summability, J. Math. Anal. Appl. 336 (2007), no. 2, 1161–1177. MR 2353008, DOI 10.1016/j.jmaa.2007.03.057
- H. Junek, M. C. Matos and D. Pellegrino, Inclusion theorems for absolutely summing holomorphic mappings, Proc. Amer. Math. Soc. 136 (2008), 3983-3991.
- Omran Kouba, On the interpolation of injective or projective tensor products of Banach spaces, J. Funct. Anal. 96 (1991), no. 1, 38–61. MR 1093506, DOI 10.1016/0022-1236(91)90072-D
- Karl Lermer, The Grothendieck-Pietsch domination principle for nonlinear summing integral operators, Studia Math. 129 (1998), no. 2, 97–112. MR 1608150, DOI 10.4064/sm-129-2-97-112
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Mário C. Matos, Fully absolutely summing and Hilbert-Schmidt multilinear mappings, Collect. Math. 54 (2003), no. 2, 111–136. MR 1995136
- Mário C. Matos and Daniel M. Pellegrino, Fully summing mappings between Banach spaces, Studia Math. 178 (2007), no. 1, 47–61. MR 2282489, DOI 10.4064/sm178-1-3
- Gustavo A. Muñoz, Yannis Sarantopoulos, and Andrew Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math. 134 (1999), no. 1, 1–33. MR 1688213, DOI 10.4064/sm-134-1-1-33
- Gustavo A. Muñoz, Complexifications of polynomials and multilinear maps on real Banach spaces, Function spaces (Poznań, 1998) Lecture Notes in Pure and Appl. Math., vol. 213, Dekker, New York, 2000, pp. 389–406. MR 1772140
- Leopoldo Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, Springer-Verlag New York, Inc., New York, 1969. MR 0254579
- Daniel Pellegrino, Cotype and absolutely summing homogeneous polynomials in $\scr L_p$ spaces, Studia Math. 157 (2003), no. 2, 121–131. MR 1980709, DOI 10.4064/sm157-2-2
- Daniel Pellegrino and Marcela Souza, Fully summing multilinear and holomorphic mappings into Hilbert spaces, Math. Nachr. 278 (2005), no. 7-8, 877–887. MR 2141964, DOI 10.1002/mana.200310279
- D. Pérez-García, Operadores multilineales absolutamente sumantes, Doctoral Thesis, Universidad Complutense de Madrid, 2003.
- David Pérez-García, The inclusion theorem for multiple summing operators, Studia Math. 165 (2004), no. 3, 275–290. MR 2110152, DOI 10.4064/sm165-3-5
- David Pérez-García and Ignacio Villanueva, Multiple summing operators on Banach spaces, J. Math. Anal. Appl. 285 (2003), no. 1, 86–96. MR 2000141, DOI 10.1016/S0022-247X(03)00352-4
- David Pérez-García and Ignacio Villanueva, Multiple summing operators on $C(K)$ spaces, Ark. Mat. 42 (2004), no. 1, 153–171. MR 2056549, DOI 10.1007/BF02432914
- A. Pietsch, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/67), 333–353 (German). MR 216328, DOI 10.4064/sm-28-3-333-353
- Albrecht Pietsch, Ideals of multilinear functionals (designs of a theory), Proceedings of the second international conference on operator algebras, ideals, and their applications in theoretical physics (Leipzig, 1983) Teubner-Texte Math., vol. 67, Teubner, Leipzig, 1984, pp. 185–199. MR 763541
- M. S. Ramanujan and E. Schock, Operator ideals and spaces of bilinear operators, Linear and Multilinear Algebra 18 (1985), no. 4, 307–318. MR 826681, DOI 10.1080/03081088508817695
- M. L. V. Souza, Aplicações multilineares completamente absolutamente somantes, Doctoral Thesis, Unicamp, 2003.
- Michel Talagrand, Cotype and $(q,1)$-summing norm in a Banach space, Invent. Math. 110 (1992), no. 3, 545–556. MR 1189490, DOI 10.1007/BF01231344
Bibliographic Information
- G. Botelho
- Affiliation: Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902, Uberlândia, Brazil
- MR Author ID: 638411
- Email: botelho@ufu.br
- H.-A. Braunss
- Affiliation: Institute of Mathematics, University of Potsdam, 14469, Potsdam, Germany
- Email: braunss@rz.uni-potsdam.de
- H. Junek
- Affiliation: Institute of Mathematics, University of Potsdam, 14469, Potsdam, Germany
- Email: junek@rz.uni-potsdam.de
- D. Pellegrino
- Affiliation: Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, J. Pessoa, PB, Brazil
- Email: pellegrino.math@gmail.com
- Received by editor(s): March 4, 2008
- Published electronically: October 8, 2008
- Additional Notes: The fourth author is supported by CNPq Grant 308084/2006-3 and Edital MCT/CNPq 02/2006-Universal, Grant 471054/2006-2
- Communicated by: Nigel J. Kalton
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 991-1000
- MSC (2000): Primary 46G25
- DOI: https://doi.org/10.1090/S0002-9939-08-09691-3
- MathSciNet review: 2457439