AHS-structures and affine holonomies
HTML articles powered by AMS MathViewer
- by Andreas Čap
- Proc. Amer. Math. Soc. 137 (2009), 1073-1080
- DOI: https://doi.org/10.1090/S0002-9939-08-09722-0
- Published electronically: October 22, 2008
- PDF | Request permission
Abstract:
We show that a large class of non-metric, non-symplectic affine holonomies can be realized, uniformly and without case by case considerations, by Weyl connections associated to the natural AHS–structures on certain generalized flag manifolds.References
- Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330 (French). MR 79806
- M. Cahen, L.J. Schwachhöfer, special symplectic connections, preprint, math.DG/0402221
- Andreas Čap and Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), no. 3, 453–505. MR 1795487, DOI 10.14492/hokmj/1350912986
- Andreas Čap and Jan Slovák, Weyl structures for parabolic geometries, Math. Scand. 93 (2003), no. 1, 53–90. MR 1997873, DOI 10.7146/math.scand.a-14413
- A. Čap, J. Slovák, and V. Souček, Invariant operators on manifolds with almost Hermitian symmetric structures. II. Normal Cartan connections, Acta Math. Univ. Comenian. (N.S.) 66 (1997), no. 2, 203–220. MR 1620484
- Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875–907. MR 0168704
- Sergei Merkulov and Lorenz Schwachhöfer, Classification of irreducible holonomies of torsion-free affine connections, Ann. of Math. (2) 150 (1999), no. 1, 77–149. MR 1715321, DOI 10.2307/121098
- Keizo Yamaguchi, Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Adv. Stud. Pure Math., vol. 22, Math. Soc. Japan, Tokyo, 1993, pp. 413–494. MR 1274961, DOI 10.2969/aspm/02210413
Bibliographic Information
- Andreas Čap
- Affiliation: Institut für Mathematik, Universität Wien, Nordbergstrasse 15, A–1090 Wien,Austria – and – International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, A–1090 Wien, Austria
- Email: Andreas.Cap@esi.ac.at
- Received by editor(s): April 22, 2008
- Published electronically: October 22, 2008
- Additional Notes: The author was supported by project P 19500–N13 of the “Fonds zur Förderung de wissenschaftlichen Forschung” (FWF)
- Communicated by: Jon G. Wolfson
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1073-1080
- MSC (2000): Primary 53C29, 53C10; Secondary 53C15, 53C30, 53B15
- DOI: https://doi.org/10.1090/S0002-9939-08-09722-0
- MathSciNet review: 2457449