$(\mathcal {C}_{p}, \alpha )$-hyponormal operators and trace-class self-commutators with trace zero
HTML articles powered by AMS MathViewer
- by Vasile Lauric
- Proc. Amer. Math. Soc. 137 (2009), 945-953
- DOI: https://doi.org/10.1090/S0002-9939-08-09731-1
- Published electronically: October 28, 2008
- PDF | Request permission
Abstract:
We define the class of $({\mathcal {C}}_{p}, \alpha )$-hyponormal operators and study the inclusion between such classes under various hypotheses for $p$ and $\alpha$, and then obtain some sufficient conditions for the self-commutator of the Aluthge transform $\tilde T=|T|^{\frac {1}{2}} U |T|^{\frac {1}{2}}$ of $(\mathcal {C}_{p},\alpha )$-hyponormal operators to be in the trace-class and have trace zero.References
- Muneo Ch\B{o}, Masuo Itoh, and Satoru ลshiro, Weylโs theorem holds for $p$-hyponormal operators, Glasgow Math. J. 39 (1997), no.ย 2, 217โ220. MR 1460636, DOI 10.1017/S0017089500032092
- Raรบl E. Curto, Paul S. Muhly, and Daoxing Xia, A trace estimate for $p$-hyponormal operators, Integral Equations Operator Theory 6 (1983), no.ย 4, 507โ514. MR 708409, DOI 10.1007/BF01691913
- Takayuki Furuta, $A\geq B\geq 0$ assures $(B^rA^pB^r)^{1/q}\geq B^{(p+2r)/q}$ for $r\geq 0$, $p\geq 0$, $q\geq 1$ with $(1+2r)q\geq p+2r$, Proc. Amer. Math. Soc. 101 (1987), no.ย 1, 85โ88. MR 897075, DOI 10.1090/S0002-9939-1987-0897075-6
- Don Hadwin and Eric Nordgren, Extensions of the Berger-Shaw theorem, Proc. Amer. Math. Soc. 102 (1988), no.ย 3, 517โ525. MR 928971, DOI 10.1090/S0002-9939-1988-0928971-X
- Danko R. Jociฤ, Integral representation formula for generalized normal derivations, Proc. Amer. Math. Soc. 127 (1999), no.ย 8, 2303โ2314. MR 1486737, DOI 10.1090/S0002-9939-99-04802-9
- Il Bong Jung, Eungil Ko, and Carl Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40 (2001), no.ย 1, 52โ60. MR 1829514, DOI 10.1007/BF01202954
- Vasile Lauric and Carl M. Pearcy, Trace-class commutators with trace zero, Acta Sci. Math. (Szeged) 66 (2000), no.ย 1-2, 341โ349. MR 1768871
- J. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold Company, London (1971).
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Gรถttingen-Heidelberg, 1960. MR 0119112
- Joseph G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2) 9 (1974/75), 165โ175. MR 365196, DOI 10.1112/jlms/s2-9.1.165
Bibliographic Information
- Vasile Lauric
- Affiliation: Department of Mathematics, Florida A&M University, Tallahassee, Florida 32307
- Received by editor(s): February 7, 2008
- Published electronically: October 28, 2008
- Communicated by: Nigel J. Kalton
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 945-953
- MSC (2000): Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-08-09731-1
- MathSciNet review: 2457434
Dedicated: This paper is dedicated to the memory of my grandparents.