Orbit-counting for nilpotent group shifts
HTML articles powered by AMS MathViewer
- by Richard Miles and Thomas Ward
- Proc. Amer. Math. Soc. 137 (2009), 1499-1507
- DOI: https://doi.org/10.1090/S0002-9939-08-09649-4
- Published electronically: October 23, 2008
- PDF | Request permission
Abstract:
We study the asymptotic behaviour of the orbit-counting function and a dynamical Mertens’ theorem for the full $G$-shift for a finitely-generated torsion-free nilpotent group $G$. Using bounds for the Möbius function on the lattice of subgroups of finite index and known subgroup growth estimates, we find a single asymptotic of the shape \[ \sum _{\vert \tau \vert \le N}\frac {1}{e^{h\vert \tau \vert }}\sim CN^{\alpha }(\log N)^{\beta } \] where $\vert \tau \vert$ is the cardinality of the finite orbit $\tau$ and $h$ denotes the topological entropy. For the usual orbit-counting function we find upper and lower bounds, together with numerical evidence to suggest that for actions of non-cyclic groups there is no single asymptotic in terms of elementary functions.References
- Henry H. Crapo, Möbius inversion in lattices, Arch. Math. (Basel) 19 (1968), 595–607 (1969). MR 245483, DOI 10.1007/BF01899388
- Marcus du Sautoy and Fritz Grunewald, Analytic properties of zeta functions and subgroup growth, Ann. of Math. (2) 152 (2000), no. 3, 793–833. MR 1815702, DOI 10.2307/2661355
- G. Everest, R. Miles, S. Stevens, and T. Ward, Orbit-counting in non-hyperbolic dynamical systems, J. Reine Angew. Math. 608 (2007), 155–182. MR 2339472, DOI 10.1515/CRELLE.2007.056
- F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), no. 1, 185–223. MR 943928, DOI 10.1007/BF01393692
- Charles Kratzer and Jacques Thévenaz, Fonction de Möbius d’un groupe fini et anneau de Burnside, Comment. Math. Helv. 59 (1984), no. 3, 425–438 (French). MR 761806, DOI 10.1007/BF02566359
- François Ledrappier, Un champ markovien peut être d’entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A561–A563 (French, with English summary). MR 512106
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- D. A. Lind, A zeta function for $\textbf {Z}^d$-actions, Ergodic theory of $\textbf {Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 433–450. MR 1411232, DOI 10.1017/CBO9780511662812.019
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- William Parry and Mark Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573–591. MR 727704, DOI 10.2307/2006982
- Richard Sharp, An analogue of Mertens’ theorem for closed orbits of Axiom A flows, Bol. Soc. Brasil. Mat. (N.S.) 21 (1991), no. 2, 205–229. MR 1139566, DOI 10.1007/BF01237365
- G. C. Smith, Zeta functions of torsion free finitely generated nilpotent groups, Ph.D. thesis, Manchester (UMIST), 1983.
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260, DOI 10.1017/CBO9780511805967
- T. B. Ward, Periodic points for expansive actions of $\textbf {Z}^d$ on compact abelian groups, Bull. London Math. Soc. 24 (1992), no. 4, 317–324. MR 1165372, DOI 10.1112/blms/24.4.317
Bibliographic Information
- Richard Miles
- Affiliation: School of Mathematics, KTH, SE-100 44, Stockholm, Sweden
- Thomas Ward
- Affiliation: School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- MR Author ID: 180610
- Received by editor(s): June 25, 2007
- Received by editor(s) in revised form: August 22, 2007, and May 5, 2008
- Published electronically: October 23, 2008
- Additional Notes: We thank Johannes Siemons and Shaun Stevens for their suggestions. This research was supported by E.P.S.R.C. grant EP/C015754/1.
- Communicated by: Jane M. Hawkins
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1499-1507
- MSC (2000): Primary 22D40, 37A15, 37A35
- DOI: https://doi.org/10.1090/S0002-9939-08-09649-4
- MathSciNet review: 2465676