Admissible local systems for a class of line arrangements
HTML articles powered by AMS MathViewer
- by Shaheen Nazir and Zahid Raza
- Proc. Amer. Math. Soc. 137 (2009), 1307-1313
- DOI: https://doi.org/10.1090/S0002-9939-08-09661-5
- Published electronically: November 6, 2008
- PDF | Request permission
Abstract:
A rank one local system $\mathcal {L}$ on a smooth complex algebraic variety $M$ is admissible if roughly speaking the dimension of the cohomology groups $H^m(M,\mathcal {L})$ can be computed directly from the cohomology algebra $H(M,\mathbb {C})$.
We say that a line arrangement $\mathcal {A}$ is of type $\mathcal {C}_k$ for some $k\ge 0$ if $k$ is the minimal number of lines in $\mathcal {A}$ containing all the points of multiplicity at least 3. We show that if $\mathcal {A}$ is a line arrangement in the classes $\mathcal {C}_k$ for $k\leq 2$, then any rank one local system $\mathcal {L}$ on the line arrangement complement $M$ is admissible. Partial results are obtained for the class $\mathcal {C}_3$.
References
- A. D. R. Choudary, A. Dimca, and Ş. Papadima, Some analogs of Zariski’s theorem on nodal line arrangements, Algebr. Geom. Topol. 5 (2005), 691–711. MR 2153112, DOI 10.2140/agt.2005.5.691
- Daniel C. Cohen and Alexander I. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 33–53. MR 1692519, DOI 10.1017/S0305004199003576
- Alexandru Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004. MR 2050072, DOI 10.1007/978-3-642-18868-8
- A. Dimca: On admissible rank one local systems, J. Algebra (2008), doi:10.1016/j.jalgebra.2008.01.039.
- A. Dimca, S. Papadima, A. Suciu: Formality, Alexander invariants, and a question of Serre, math.AT/0512480.
- Alexandru Dimca and Laurentiu Maxim, Multivariable Alexander invariants of hypersurface complements, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3505–3528. MR 2299465, DOI 10.1090/S0002-9947-07-04241-9
- Hélène Esnault, Vadim Schechtman, and Eckart Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), no. 3, 557–561. MR 1176205, DOI 10.1007/BF01232040
- Michael Falk, Arrangements and cohomology, Ann. Comb. 1 (1997), no. 2, 135–157. MR 1629681, DOI 10.1007/BF02558471
- Anatoly Libgober and Sergey Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337–361. MR 1761630, DOI 10.1023/A:1001826010964
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Vadim Schechtman, Hiroaki Terao, and Alexander Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), no. 1-3, 93–102. MR 1344845, DOI 10.1016/0022-4049(95)00014-N
- Alexander I. Suciu, Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118 (2002), no. 1-2, 209–223. Arrangements in Boston: a Conference on Hyperplane Arrangements (1999). MR 1877726, DOI 10.1016/S0166-8641(01)00052-9
Bibliographic Information
- Shaheen Nazir
- Affiliation: Abdus Salam School of Mathematical Sciences, Government College University,68-B New Muslim Town, Lahore, Pakistan
- Address at time of publication: Abdus Salam School of Mathematical Sciences, Government College University, 35 C-2 Gulberg III, Lahore, Pakistan
- Email: shaheen.nazeer@gmail.com
- Zahid Raza
- Affiliation: Abdus Salam School of Mathematical Sciences, Government College University, 68-B New Muslim Town, Lahore, Pakistan
- Email: zahidsms@gmail.com
- Received by editor(s): January 22, 2008
- Received by editor(s) in revised form: June 2, 2008
- Published electronically: November 6, 2008
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1307-1313
- MSC (2000): Primary 14C21, 14F99, 32S22; Secondary 14E05, 14H50
- DOI: https://doi.org/10.1090/S0002-9939-08-09661-5
- MathSciNet review: 2465653