Linearly approximatable functions
HTML articles powered by AMS MathViewer
- by Thierry De Pauw and Amos Koeller
- Proc. Amer. Math. Soc. 137 (2009), 1347-1356
- DOI: https://doi.org/10.1090/S0002-9939-08-09667-6
- Published electronically: October 6, 2008
- PDF | Request permission
Abstract:
The notion of uniform linear approximatability generalizes that of being continuously differentiable. It occurs, e.g., in viscosity solutions of some degenerate partial differential equations. We establish the Hölder continuity of uniformly linearly approximatable functions, and we show that functions which are nowhere linearly approximatable form a residual collection of the appropriate Hölder space. Finally, we prove an analog of the implicit function theorem applied to level sets.References
- Gunnar Aronsson, Michael G. Crandall, and Petri Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505. MR 2083637, DOI 10.1090/S0273-0979-04-01035-3
- S. Banach, Über die bairesche kategorie gewisser funktionenmengen, Stud. Math. 3 (1931), 174–179.
- Michael G. Crandall and L. C. Evans, A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000) Electron. J. Differ. Equ. Conf., vol. 6, Southwest Texas State Univ., San Marcos, TX, 2001, pp. 123–129. MR 1804769
- G. David, Th. De Pauw, and T. Toro, Extensions of Reifenberg’s topological disk theorem, Geom. Funct. Anal. (to appear).
- Thierry de Pauw and Petri Huovinen, Points of $\epsilon$-differentiability of Lipschitz functions from $\Bbb R^n$ to $\Bbb R^{n-1}$, Bull. London Math. Soc. 34 (2002), no. 5, 539–550. MR 1912876, DOI 10.1112/S0024609302001157
- F. Grünbaum and E. H. Zarantonello, On the extension of uniformly continuous mappings, Michigan Math. J. 15 (1968), 65–74. MR 223506, DOI 10.1307/mmj/1028999906
- S. Mazurkiewicz, Sur les fonctions non dérivables, Stud. Math 3 (1931), 92–94.
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511, DOI 10.1007/978-3-540-69952-1
- E. R. Reifenberg, Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. MR 114145, DOI 10.1007/BF02547186
- Ovidiu Savin, $C^1$ regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal. 176 (2005), no. 3, 351–361. MR 2185662, DOI 10.1007/s00205-005-0355-8
- Tatiana Toro, Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995), no. 1, 193–227. MR 1317632, DOI 10.1215/S0012-7094-95-07708-4
Bibliographic Information
- Thierry De Pauw
- Affiliation: Université Catholique de Louvain, Département de Mathématiques, Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgique
- Email: thierry.depauw@uclouvain.be
- Amos Koeller
- Affiliation: Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Email: akoeller@everest.mathematik.uni-tuebingen.de
- Received by editor(s): April 10, 2008
- Published electronically: October 6, 2008
- Additional Notes: The first author is a chercheur qualifié of the Fonds National de la Recherche Scientifique, Belgium
- Communicated by: Tatiana Toro
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 1347-1356
- MSC (2000): Primary 26B35, 26B10, 46E10
- DOI: https://doi.org/10.1090/S0002-9939-08-09667-6
- MathSciNet review: 2465658