Pfister’s theorem for orthogonal involutions of degree 12
HTML articles powered by AMS MathViewer
- by Skip Garibaldi and Anne Quéguiner-Mathieu
- Proc. Amer. Math. Soc. 137 (2009), 1215-1222
- DOI: https://doi.org/10.1090/S0002-9939-08-09674-3
- Published electronically: October 2, 2008
- PDF | Request permission
Abstract:
We use the fact that a projective half-spin representation of $\operatorname {Spin}_{12}$ has an open orbit to generalize Pfister’s result on quadratic forms of dimension 12 in $I^3$ to orthogonal involutions.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension $\leq 2$, Invent. Math. 122 (1995), no. 2, 195–229. MR 1358975, DOI 10.1007/BF01231443
- E. Bayer-Fluckiger, Daniel B. Shapiro, and J.-P. Tignol, Hyperbolic involutions, Math. Z. 214 (1993), no. 3, 461–476. MR 1245206, DOI 10.1007/BF02572417
- Grégory Berhuy, Cohomological invariants of quaternionic skew-Hermitian forms, Arch. Math. (Basel) 88 (2007), no. 5, 434–447. MR 2316889, DOI 10.1007/s00013-006-2001-6
- Jean Dieudonné, Les extensions quadratiques des corps non commutatifs et leurs applications, Acta Math. 87 (1952), 175–242 (French). MR 49873, DOI 10.1007/BF02392286
- Mohamed Abdou Elomary and Jean-Pierre Tignol, Classification of quadratic forms over skew fields of characteristic 2, J. Algebra 240 (2001), no. 1, 366–392. MR 1830558, DOI 10.1006/jabr.2001.8737
- S. Garibaldi, Cohomological invariants: Exceptional groups and spin groups, with an appendix by Detlev W. Hoffmann, Memoirs Amer. Math. Soc., to appear.
- —, Orthogonal involutions on algebras of degree $16$ and the Killing form of ${E}_8$, with an appendix by Kirill Zainoulline, preprint, 2008.
- P. Gille, Le problème de Kneser-Tits, Séminaire Bourbaki, 60ème année, no. 983, 2006–2007.
- Jun-ichi Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028. MR 277558, DOI 10.2307/2373406
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
- T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. MR 2104929, DOI 10.1090/gsm/067
- Albrecht Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116–132 (German). MR 200270, DOI 10.1007/BF01389724
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Anne Quéguiner-Mathieu, Invariants cohomologiques: des formes quadratiques aux algèbres à involution, Théorie des nombres (Besançon, 2002) Publ. Math. UFR Sci. Tech. Besançon, Univ. Franche-Comté, Besançon, 2002, pp. 12 (French, with French summary). MR 1990438
- Anne Quéguiner-Mathieu and Jean-Pierre Tignol, Discriminant and Clifford algebras, Math. Z. 240 (2002), no. 2, 345–384. MR 1900315, DOI 10.1007/s002090100385
- M. Rost, On $14$-dimensional quadratic forms, their spinors, and the difference of two octonion algebras, preprint, March 1999.
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
- J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220 (French). MR 277536, DOI 10.1515/crll.1971.247.196
- Burt Totaro, The torsion index of $E_8$ and other groups, Duke Math. J. 129 (2005), no. 2, 219–248. MR 2165542, DOI 10.1215/S0012-7094-05-12922-2
Bibliographic Information
- Skip Garibaldi
- Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- MR Author ID: 622970
- ORCID: 0000-0001-8924-5933
- Email: skip@member.ams.org
- Anne Quéguiner-Mathieu
- Affiliation: Université Paris 13 (LAGA), CNRS (UMR 7539), Université Paris 12 (IUFM), 93430 Villetaneuse, France
- Email: queguin@math.univ-paris13.fr
- Received by editor(s): April 10, 2008
- Published electronically: October 2, 2008
- Communicated by: Martin Lorenz
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1215-1222
- MSC (2000): Primary 20G15; Secondary 16W10, 11E04
- DOI: https://doi.org/10.1090/S0002-9939-08-09674-3
- MathSciNet review: 2465642