On endomorphism rings and dimensions of local cohomology modules
HTML articles powered by AMS MathViewer
- by Peter Schenzel
- Proc. Amer. Math. Soc. 137 (2009), 1315-1322
- DOI: https://doi.org/10.1090/S0002-9939-08-09676-7
- Published electronically: November 12, 2008
- PDF | Request permission
Abstract:
Let $(R,\mathfrak m)$ denote an $n$-dimensional complete local Gorenstein ring. For an ideal $I$ of $R$ let $H^i_I(R), i \in \mathbb Z,$ denote the local cohomology modules of $R$ with respect to $I.$ If $H^i_I(R) = 0$ for all $i \not = c = \operatorname {height} I,$ then the endomorphism ring of $H^c_I(R)$ is isomorphic to $R$. Here we prove that this is true if and only if $H^i_I(R) = 0$ for $i = n, n-1$, provided $c \geq 2$ and $R/I$ has an isolated singularity, resp. if $I$ is set-theoretically a complete intersection in codimension at most one. Moreover, there is a vanishing result of $H^i_I(R)$ for all $i > m, m$ a given integer, and an estimate of the dimension of $H^i_I(R).$References
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- Robin Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145–164. MR 257096, DOI 10.1007/BF01404554
- M. Hellus, P. Schenzel: On cohomologically complete intersections, J. Algebra 320 (2008), 3733-3748.
- M. Hellus and J. Stückrad, On endomorphism rings of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2333–2341. MR 2390499, DOI 10.1090/S0002-9939-08-09240-X
- C. Huneke and G. Lyubeznik, On the vanishing of local cohomology modules, Invent. Math. 102 (1990), no. 1, 73–93. MR 1069240, DOI 10.1007/BF01233420
- Ken-ichiroh Kawasaki, On the highest Lyubeznik number, Math. Proc. Cambridge Philos. Soc. 132 (2002), no. 3, 409–417. MR 1891679, DOI 10.1017/S0305004101005722
- Gennady Lyubeznik, Finiteness properties of local cohomology modules (an application of $D$-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41–55. MR 1223223, DOI 10.1007/BF01244301
- Peter Schenzel, On birational Macaulayfications and Cohen-Macaulay canonical modules, J. Algebra 275 (2004), no. 2, 751–770. MR 2052635, DOI 10.1016/j.jalgebra.2003.12.016
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Bibliographic Information
- Peter Schenzel
- Affiliation: Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
- MR Author ID: 155825
- ORCID: 0000-0003-1569-5100
- Email: peter.schenzel@informatik.uni-halle.de
- Received by editor(s): April 21, 2008
- Received by editor(s) in revised form: June 17, 2008
- Published electronically: November 12, 2008
- Communicated by: Bernd Ulrich
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1315-1322
- MSC (2000): Primary 13D45; Secondary 13H10, 14M10
- DOI: https://doi.org/10.1090/S0002-9939-08-09676-7
- MathSciNet review: 2465654