Smoothness of radial solutions to Monge-Ampère equations
HTML articles powered by AMS MathViewer
- by Cristian Rios and Eric T. Sawyer
- Proc. Amer. Math. Soc. 137 (2009), 1373-1379
- DOI: https://doi.org/10.1090/S0002-9939-08-09694-9
- Published electronically: November 5, 2008
- PDF | Request permission
Abstract:
We prove that generalized convex radial solutions to the generalized Monge-Ampère equation $\det D^2u = f(|x|^2/2,u,|\nabla u|^2/2)$ with $f$ smooth are always smooth away from the origin. Moreover, we characterize the global smoothness of these solutions in terms of the order of vanishing of $f$ at the origin.References
- A. D. Alexandrov, Dirichlet’s problem for the equation $Det\left \Vert z_{ij}\right \Vert =\Phi \left ( z_{1},...z_{n},z,x_{1},...x_{n}\right )$, I, Vestnik Leningrad Univ. Ser. Mat. Mekh. Astr. 13 (1958), 5-24.
- Jean-Michel Bony, Fabrizio Broglia, Ferruccio Colombini, and Ludovico Pernazza, Nonnegative functions as squares or sums of squares, J. Funct. Anal. 232 (2006), no. 1, 137–147. MR 2200169, DOI 10.1016/j.jfa.2005.06.011
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the Monge-Ampère equation $\textrm {det}(\partial ^{2}u/\partial x_{i}\partial sx_{j})=F(x,u)$, Comm. Pure Appl. Math. 30 (1977), no. 1, 41–68. MR 437805, DOI 10.1002/cpa.3160300104
- M. Derridj, Sur l’existence et la régularité de solutions radiales pour des équations de type Monge-Ampère complexe, Math. Ann. 280 (1988), no. 1, 33–43 (French). MR 928296, DOI 10.1007/BF01474179
- Georges Glaeser, Racine carrée d’une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 203–210 (French). MR 163995, DOI 10.5802/aif.146
- Pengfei Guan, $C^2$ a priori estimates for degenerate Monge-Ampère equations, Duke Math. J. 86 (1997), no. 2, 323–346. MR 1430436, DOI 10.1215/S0012-7094-97-08610-5
- Pengfei Guan and Eric Sawyer, Regularity estimates for the oblique derivative problem, Ann. of Math. (2) 137 (1993), no. 1, 1–70. MR 1200076, DOI 10.2307/2946618
- Pengfei Guan, Neil S. Trudinger, and Xu-Jia Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math. 182 (1999), no. 1, 87–104. MR 1687172, DOI 10.1007/BF02392824
- David Monn, Regularity of the complex Monge-Ampere equation for radially symmetric functions of the unit ball, Math. Ann. 275 (1986), no. 3, 501–511. MR 858292, DOI 10.1007/BF01458619
- Eric T. Sawyer and Richard L. Wheeden, Regularity of degenerate Monge-Ampère and prescribed Gaussian curvature equations in two dimensions, Potential Anal. 24 (2006), no. 3, 267–301. MR 2217954, DOI 10.1007/s11118-005-0915-4
Bibliographic Information
- Cristian Rios
- Affiliation: Department of Mathematics, University of Calgary, Calgary, Alberta, Canada
- Email: crios@math.ucalgary.ca
- Eric T. Sawyer
- Affiliation: Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
- MR Author ID: 155255
- Email: saw6453cdn@aol.com
- Received by editor(s): April 22, 2008
- Published electronically: November 5, 2008
- Communicated by: Matthew J. Gursky
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1373-1379
- MSC (2000): Primary 35B65, 35J70; Secondary 35D05, 35D10, 35C15
- DOI: https://doi.org/10.1090/S0002-9939-08-09694-9
- MathSciNet review: 2465662