On genus change in algebraic curves over imperfect fields
HTML articles powered by AMS MathViewer
- by Stefan Schröer
- Proc. Amer. Math. Soc. 137 (2009), 1239-1243
- DOI: https://doi.org/10.1090/S0002-9939-08-09712-8
- Published electronically: October 9, 2008
- PDF | Request permission
Abstract:
We give a new proof, in scheme-theoretic language, of Tate’s classical result on genus change of curves over imperfect fields in characteristic $p>0$. Namely, for normal geometrically integral curves, the difference between arithmetic and geometric genus over the algebraic closure is divisible by $(p-1)/2$.References
- N. Bourbaki, Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Reinhardt Kiehl and Ernst Kunz, Vollständige Durchschnitte und $p$-Basen, Arch. Math. 16 (1965), 348–362 (German). MR 188220, DOI 10.1007/BF01220042
- N. I. Shepherd-Barron, Geography for surfaces of general type in positive characteristic, Invent. Math. 106 (1991), no. 2, 263–274. MR 1128215, DOI 10.1007/BF01243913
- John Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400–406. MR 47631, DOI 10.1090/S0002-9939-1952-0047631-9
Bibliographic Information
- Stefan Schröer
- Affiliation: Mathematisches Institut, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- MR Author ID: 630946
- Email: schroeer@math.uni-duesseldorf.de
- Received by editor(s): April 11, 2007
- Received by editor(s) in revised form: April 17, 2008
- Published electronically: October 9, 2008
- Communicated by: Ted Chinburg
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1239-1243
- MSC (2000): Primary 14H20
- DOI: https://doi.org/10.1090/S0002-9939-08-09712-8
- MathSciNet review: 2465645