Affine interval exchange transformations with flips and wandering intervals
HTML articles powered by AMS MathViewer
- by C. Gutierrez, S. Lloyd and B. Pires
- Proc. Amer. Math. Soc. 137 (2009), 1439-1445
- DOI: https://doi.org/10.1090/S0002-9939-08-09718-9
- Published electronically: November 3, 2008
- PDF | Request permission
Abstract:
There exist uniquely ergodic affine interval exchange transformations of [0,1] with flips which have wandering intervals and are such that the support of the invariant measure is a Cantor set.References
- D. Berry and B. D. Mestel, Wandering intervals for Lorenz maps with bounded nonlinearity, Bull. London Math. Soc. 23 (1991), no. 2, 183–189. MR 1122907, DOI 10.1112/blms/23.2.183
- A. M. Blokh and M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 751–758. MR 1036906, DOI 10.1017/S0143385700005319
- X. Bressaud, P. Hubert and A. Maass. Persistence of wandering intervals in self-similar affine interval exchange transformations. Preprint, arXiv:math.DS/08012088 (2007).
- Ricardo Camelier and Carlos Gutierrez, Affine interval exchange transformations with wandering intervals, Ergodic Theory Dynam. Systems 17 (1997), no. 6, 1315–1338. MR 1488320, DOI 10.1017/S0143385797097666
- Milton Cobo, Piece-wise affine maps conjugate to interval exchanges, Ergodic Theory Dynam. Systems 22 (2002), no. 2, 375–407. MR 1898797, DOI 10.1017/S0143385702000196
- A. Denjoy. Sur le courbes définies par les équations différentielles à la surface du tore. J. Math. Pure et Appl. 11 (1932), série 9, 333–375.
- F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
- John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR 553966, DOI 10.1007/BF01982351
- C. Gutierrez, S. Lloyd, V. Medvedev, B. Pires and E. Zhuzhoma. Unique ergodicity of circle and interval exchange transformations with flips. Preprint, arXiv:math.DS/07113821 (2007).
- Michael Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977), no. 2, 188–196. MR 435353, DOI 10.1007/BF03007668
- Gilbert Levitt, La décomposition dynamique et la différentiabilité des feuilletages des surfaces, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 3, 85–116 (French, with English summary). MR 916275, DOI 10.5802/aif.1099
- Isabelle Liousse and Habib Marzougui, Échanges d’intervalles affines conjugués à des linéaires, Ergodic Theory Dynam. Systems 22 (2002), no. 2, 535–554 (French, with English and French summaries). MR 1898804, DOI 10.1017/S0143385702000263
- M. Martens, W. de Melo, and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), no. 3-4, 273–318. MR 1161268, DOI 10.1007/BF02392981
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI 10.2307/1971341
- Arnaldo Nogueira, Almost all interval exchange transformations with flips are nonergodic, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 515–525. MR 1016669, DOI 10.1017/S0143385700005150
- Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), no. 4, 315–328 (French). MR 543205, DOI 10.4064/aa-34-4-315-328
- William A. Veech, Interval exchange transformations, J. Analyse Math. 33 (1978), 222–272. MR 516048, DOI 10.1007/BF02790174
- William A. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 113–193. MR 633764
- Jean-Christophe Yoccoz, Il n’y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 7, 141–144 (French, with English summary). MR 741080
Bibliographic Information
- C. Gutierrez
- Affiliation: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos - SP, Brazil
- Email: gutp@icmc.usp.br
- S. Lloyd
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
- Email: s.lloyd@unsw.edu.au
- B. Pires
- Affiliation: Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo, Ribeirão Preto - SP, Brazil
- Email: benito@ffclrp.usp.br
- Received by editor(s): February 28, 2008
- Received by editor(s) in revised form: May 31, 2008
- Published electronically: November 3, 2008
- Additional Notes: The first author was partially supported by FAPESP Grant 03/03107-9 and by CNPq Grants 470957/2006-9 and 306328/2006-2.
- Communicated by: Jane M. Hawkins
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1439-1445
- MSC (2000): Primary 37E05, 37E10; Secondary 37Bxx
- DOI: https://doi.org/10.1090/S0002-9939-08-09718-9
- MathSciNet review: 2465670