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RATIONAL HOMOTOPY OF GAUGE GROUPS

YVES FÉLIX AND JOHN OPREA

(Communicated by Paul Goerss)

Abstract. In this brief paper, we observe that basic results from rational
homotopy theory provide formulas for the rational homotopy groups of gauge
groups of principal bundles K → P → B in terms of the rational homotopy
groups of K and cohomology groups of B alone.

1. Introduction

Let K → P
ξ→ B be a continuous principal K-bundle, where K is a compact

connected Lie group. Denote by G(ξ) the gauge group of ξ: that is, the set of all K-
equivariant self-homeomorphisms of P over B. Also, denote by G1(ξ) the subgroup
of G(ξ) consisting of the self-homeomorphisms that preserve the basepoint of P .
(It is common in the subject to take for G1(ξ) the self-homeomorphisms that fix a
given fibre K, but because G(ξ) consists of equivariant maps, this is equivalent to
our definition above.) The topology of gauge groups has been considered by many
authors; see, for instance, [5], [2] or [11]. Indeed, the study of the homotopy theory
of gauge groups (under a different name) goes back to [5].

Now, there is an obvious homeomorphism of groups G1(ξ) ∼= Map∗(P, K)K ,
where the subscript K on the mapping space denotes the space of equivariant maps
with respect to the free (principal) action of K on P and the conjugation action
of K on K. In [16], S. Terzić shows that when B is a closed simply connected
4-manifold, there is a formula for the ranks of the homotopy groups πj(G(ξ)) and
πj(G1(ξ)) in terms of the ranks of the homotopy of K and homology of B alone
(see Corollary 3.3).

Also, when K is abelian, we clearly have G1(ξ) = Map∗(P, K)K = Map∗(B, K).
For dim(B) ≤ 4, it was shown in [12] that even when K is non-abelian, there is
a weak equivalence between G1(ξ) and Map∗(B, K). In certain cases, this result
can be extended beyond these cases (see Corollary 2.2). Indeed, more recently, in

[18, 19], C. Wockel shows that for principal bundles K → P
ξ→ Sm, there is an

identification of homotopy types Map∗(P, K)K � Map∗(Sm, K) (and a consequent
isomorphism πq(G1(ξ)) = πq+m(K) over Z).

The purpose of this short paper is simply to observe that the philosophy of
the preceding paragraph, in the framework of rational homotopy theory, allows
the derivation of a general formula (see Theorem 3.1) for the rational homotopy
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1520 YVES FÉLIX AND JOHN OPREA

groups of the gauge groups G(ξ) and G1(ξ) which, in particular, recovers Wockel’s
isomorphism (over the rationals) when the base is a sphere and specializes to the
formula of Terzić when the base is a 4-manifold. Because these results are of interest
to non-topologists, we have tried to include as many details as possible within the
confines of a desire for conciseness.

2. Homotopy type of gauge groups

One basic result of the theory of gauge groups says the following.

Theorem 2.1. For a principal bundle K → P
ξ→ B with classifying map f : B →

BK ,

G(ξ) = Map(P, K)K � ΩMap(B, BK ; f)

and

G1(ξ) = Map∗(P, K)K � ΩMap∗(B, BK ; f) .

This theorem may be proved in several ways. For instance, it was shown in
[5, Theorems 5.2 and 5.6, Proposition 4.3] that G(ξ) and G1(ξ) are the fibres in
fibrations with the mapping spaces Map(B, BK ; f) and Map∗(B, BK ; f), respec-
tively, as base spaces and with (essentially) contractible total spaces. Also see [2,
Theorem 3.3 and Corollary 5.7] and [11, Chapter 2].

In general, if W has the homotopy type of an H-space (for instance, a topological
group or a loop space), then all the components of Map(Z, W ) have the same homo-
topy type, because multiplication with f provides an equivalence Map(Z, W ; ∗)

∼=→
Map(Z, W ; f). Furthermore, if Z = ΣX is a suspension (or, more generally, if Z is
an associative co-H-space), then all components of Map∗(Z, W ) = Map∗(ΣX, W ) �
Map∗(X, ΩW ; f). Therefore, under these types of conditions, we have equivalences
Map∗(Z, W ; f) � Map∗(Z, W ; ∗). Furthermore, we also have the general equality
ΩMap∗(Z, W ; f) � ΩMap∗(Z, W ; ∗) = Map∗(Z, ΩW ). Thus, using the fact that
ΩBK � K, we obtain

Corollary 2.2 ([11, Theorem 2.2.4]). If all the components of Map∗(B, BK) have
the same homotopy type, then

G1(ξ) � Map∗(B, K).

The hypothesis of Corollary 2.2 is not always satisfied. For instance, in [8]
A. Kono constructs principal SU(2)-fibrations ξ and ξ′ over S4 with G(ξ) �= G(ξ′).
In this case, all the components of Map(B, BK) do not have the same homotopy
type.

On the other hand, over the rational numbers we can generalize Corollary 2.2 to
obtain

Theorem 2.3. When B has the homotopy type of a connected finite CW complex,
there are rational homotopy equivalences

G(ξ) �Q Map(B, K) and G1(ξ) �Q Map∗(B, K) .

Proof. The mapping space Map(B, BK ; f) is a nilpotent space whose rationaliza-
tion is the space Map(B, (BK)Q; fQ) (see [6, Theorems II.2.5 and II.3.11] and [7]
for more details on free mapping spaces). Moreover, we know that the rational
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cohomology of BK is a polynomial algebra (see [4, Theorem 1.81 and Exam-
ple 2.42] for example). More specifically, the cohomology of a compact connected
Lie group is an exterior algebra H∗(K; Q) = ∧(u1, . . . , ur) with ui ∈ H2ni−1(K; Q),
and the Serre spectral sequence for the universal bundle K → EK → BK leads
to H∗(BK ; Q) = Q[v1, . . . , vr], a polynomial algebra with vi ∈ H2ni(BK ; Q).
Since cohomology corresponds in general to homotopy classes of maps, we have
H2ni(BK ; Q) = [Bk, K(Q, 2ni)], for each i = 1, . . . , r. We then obtain a map

BK →
r∏

i=1

K(Q, 2ni)

which clearly induces an isomorphism on rational cohomology (as well as homology)
and is, therefore, a rational equivalence. Hence, the rationalization (BK)Q is an
H-space (since a product of K(Q, j)’s clearly is), so Map(B, (BK)Q; fQ) has the
homotopy type of Map(B, (BK)Q; ∗). Then

G(ξ) � ΩMap(B, BK ; f) �Q ΩMap(B, (BK)Q; ∗) � Map(B, KQ),

since ΩBK � K.
The exact same argument applies to the based mapping space Map∗(B, BK ; f)

and G1(ξ). �
Remark 2.4. The same argument as in the proof applied to the cohomology alge-
bra H∗(K; Q) = ∧(u1, . . . , ur) of a compact connected Lie group K shows that,
rationally, K is also a product of Eilenberg-Mac Lane spaces: that is,

KQ �
r∏

i=1

K(Q, 2ni − 1).

3. Rational homotopy of gauge groups

We now use Theorem 2.3 to compute rational homotopy groups of gauge groups
for any finite connected base space B. Recall that K → P

ξ→ B is a continuous
principal bundle with K a compact connected Lie group.

Theorem 3.1. If B has the homotopy type of a finite connected CW complex, then
for any q ≥ 1, we have

πq(G(ξ))⊗ Q ∼=
∑
r≥0

Hr(B; Q) ⊗ πr+q(K)

and

πq(G1(ξ)) ⊗ Q ∼=
∑
r≥0

H̃r(B; Q) ⊗ πr+q(K) ,

where H̃ denotes reduced cohomology.

Remark 3.2. Note that since Hr(B; Q) is a rational vector space, there is no need
to write πr+q(K) ⊗ Q. Also, recall that for path-connected X, the term reduced
cohomology means that H̃j(X) = Hj(X) for j ≥ 1 and H̃0(X) = 0. Finally, there
has been much work on the rational homotopy groups of mapping spaces. See, for
example, [17, 10, 3, 1]. Each of these papers uses the minimal model theory of
Sullivan, but in the following proof, the fact that K is very simple over Q allows
us to take a more elementary approach.
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1522 YVES FÉLIX AND JOHN OPREA

Proof. By Theorem 2.3, we have the rational equivalences G(ξ) �Q Map(B, K) and
G1(ξ) �Q Map∗(B, K). Consider πq(G1(ξ))⊗Q = πq(Map∗(B, K))⊗Q. Because it
is true in general that πq(Map∗(X, Y )) = [ΣqX, Y ], and by the universal property
of localization we have

πq(Map∗(B, K)) ⊗ Q = [ΣqB, K]Q = [ΣqB, KQ]

= [ΣqB,
r∏

i=1

K(Q, 2ni − 1)] by Remark 2.4

=
r∏

i=1

[ΣqB, K(Q, 2ni − 1)]

=
r⊕

i=1

H2ni−1−q(B; Q)

=
⊕
r≥0

H̃r(B; Q) ⊗ πr+q(K),

where, in the last line, we have replaced 2ni − 1 by r + q and recognized that the
only non-zero terms occur in degrees j where πj(K) ⊗ Q �= 0.

Now, for H an H-space, we always have the following relationship between free
and based mapping spaces (see [9, Proposition 4.9] or [7] for instance):

Map(X,H; ∗) � H× Map∗(X,H; ∗).

Thus, since all components of Map(B, (BK)Q) have the same homotopy type, we
can apply this result to see that

πq(G(ξ))⊗ Q = πq(Map(B, KQ; ∗)) = πq(K) ⊗ Q ⊕ πq(Map∗(B, KQ; ∗)),

and the formula for πq(G(ξ))⊗ Q follows. �

Of course, if B = Sm, then we recover Wockel’s result over Q, πq(G1(ξ))⊗ Q =
πq+m(K) ⊗ Q. Moreover, if the base B of the principal bundle is a closed simply
connected 4-manifold, then H1(B; Q) = 0 = H3(B; Q) and H4(B; Q) = Q. Hence,
from the general formulas above, we obtain

Corollary 3.3 (Terzić’s Formula [16, Propositions 1 and 2]). If K → P → B
is a principal bundle (as above) with B a closed simply connected 4-manifold with
second Betti number b2(B), then

rank(πq(G(ξ))) = b2(B) · rank(πq+2(K)) + rank(πq+4(K)) + rank(πq(K))

and

rank(πq(G1(ξ))) = b2(B) · rank(πq+2(K)) + rank(πq+4(K)).

Note that because the formula only involves ranks of homotopy groups, it is in
fact a result about rational homotopy groups. Also, since the non-zero rational
homology of B occurs only in even-degrees and the non-zero rational homotopy
of K occurs only in odd degrees, all even-degree rational homotopy of the gauge
groups vanishes. For the same reasons, this will also be true whenever B has
Hodd(B; Q) = 0. In particular, we have
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Example 3.4. If K → P
ξ→ CPm is a principal bundle, then πq(G(ξ))⊗ Q = 0 =

πq(G1(ξ)) ⊗ Q for q even and, for q odd,

πq(G(ξ))⊗ Q =
m⊕

i=0

πq+2i(K) ⊗ Q and πq(G1(ξ)) ⊗ Q =
m⊕

i=1

πq+2i(K) ⊗ Q.

These observations can be put in a wider context. A space B is said to be
rationally elliptic if its rational homotopy and rational homology are both finite
dimensional. For instance, spheres and homogeneous spaces are rationally elliptic.
If a rationally elliptic B also has positive Euler characteristic, χ(B) > 0, then it is
known that Hodd(B; Q) = 0 (see [4, Theorem 2.75] for instance). Therefore, by the
discussion above,

πeven(G(ξ))⊗ Q = 0 = πeven(G1(ξ)) ⊗ Q

for any principal bundle K → P
ξ→ B. The connection to geometry arises from two

sources (see [4, Section 6.4] for a fuller discussion). First, there is the conjecture
of Raoul Bott that compact manifolds of positive sectional curvature are rationally
elliptic. Second, there is the conjecture of Heinz Hopf that even-dimensional com-
pact manifolds of positive sectional curvature have positive Euler characteristics.
If both these conjectures are true, then by what we have said above, the even-
degree rational homotopy groups of gauge groups vanish. This elicits the following
question:

Question 3.5. Let K → P
ξ→ B be a principal bundle. If B2m is a compact

manifold with positive sectional curvature (in some metric), then is it true that

πeven(G(ξ))⊗ Q = 0 = πeven(G1(ξ)) ⊗ Q ?

4. The gauge group of the universal bundle

Because it classifies all principal K-bundles, the most important principal bundle
is the universal bundle ξu : K → EK → BK . Thus, its gauge group is of interest.
Unfortunately, in the proof of Theorem 3.1, we needed the base space of the bundle
to be a finite complex in order to be able to localize mapping spaces. Of course,
this is not the case for BK . Nevertheless, we can still compute the rational homo-
topy groups of G(ξu) by making use of the more algebraic framework of rational
homotopy theory (see [4] for instance) and, in particular, a theorem of Smith [13].

Let aut1(X) = Map(X, X; 1X), the monoid of self-homotopy equivalences of X
homotopic to the identity 1X . There is a classifying space Baut1(X) with the usual
property that ΩBaut1(X) = aut1(X). There is a general way to study the rational
homotopy type of Baut1(X) from the viewpoint of commutative differential graded
algebras and differential graded Lie algebras (see, for instance, [14, 15]). This
viewpoint equates the rational homotopy groups with the homology of the complex
of degree-lowering derivations on the minimal model of X. We will not go into
details about models since the following special case is all that we need.

Theorem 4.1 ([13, Theorem 2 and Corollary 2]). If X is a rational H-space of
finite type, then

πq(aut1(X)) ⊗ Q = πq(ΩBaut1(X)) ⊗ Q = Derq(H∗(X; Q)),

where Derq(H∗(X; Q)) is the vector space of derivations on the cohomology algebra
which lower degree by q.
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1524 YVES FÉLIX AND JOHN OPREA

Recall that X is a rational H-space if its Q-localization is an H-space. In fact,
we have already used the fact that BK is a rational H-space of finite type in the
proof of Theorem 2.3, so Theorem 4.1 applies to BK . Indeed, as we described in
the proof of Theorem 2.3, H∗(BK ; Q) = Q[v1, . . . , vr], a polynomial algebra with
vi ∈ H2ni(BK ; Q); so Hopf’s classification says that BK �Q

∏
i K(Q, 2ni), with

the vi’s corresponding to a basis for the rational homotopy groups. Therefore BK

is an H-space after rationalization.
Now, by Theorem 2.1, the gauge group of the universal bundle is given by

G(ξu) = ΩMap(BK , BK ; 1) = Ω(aut1BK). By Theorem 4.1, we can then com-
pute the gauge group from the derivations of cohomology Der∗(H∗(BK ; Q)) =
Der∗(Q[uα]). The derivations of this algebra are particularly easy to understand.
In particular, a basis for the derivations which lower degree by q + 1 consists of
those derivations that are non-zero on a single generator ut (in degree t, say) and
have image any element in degree t − q − 1. Since the uα generate πα(BK) and
Q[uα] = H∗(BK ; Q), we can make the identification

Derq+1(Q[uα]) =
⊕
t≥0

Ht−q−1(BK ; Q) ⊗ πt(BK).

We then obtain the same formula as in Theorem 3.1, but now for the universal
bundle having infinite-dimensional base BK .

Theorem 4.2.

πq(G(ξu)) ⊗ Q =
⊕
r≥0

Hr(BK ; Q) ⊗ πq+r(K).

Proof.

πq(G(ξu)) ⊗ Q = πq(Ω(aut1BK , 1)) ⊗ Q

= πq+1(aut1BK , 1) ⊗ Q

= Derq+1(Q[uα])

=
⊕

t

Ht−q−1(BK ; Q) ⊗ πt(BK)

=
⊕

r

Hr(BK ; Q) ⊗ πq+r(K),

where we have used the general facts that πj(ΩX) = πj+1(X) and πj(K) =
πj+1(BK). This is, of course, the same result as in Theorem 3.1. �

The gauge group has many equivalent definitions (see [11, Chapter 2]). For the
universal bundle, the most homotopically interesting one is

G(ξu) = Map(EK , K)K ,

the mapping space of equivariant maps EK → K, where the action on K is by
conjugation. In homotopy theory, this is exactly the definition of the homotopy
fixed set KhK of the conjugation action. In general, it is very difficult to obtain
explicit information about KhK . Here, as a byproduct, we find

Corollary 4.3. Let K act on itself by conjugation. Then the rational homotopy
groups of the homotopy fixed set are given by

πq(KhK) ⊗ Q =
⊕
r≥0

Hr(BK ; Q) ⊗ πq+r(K).
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The homotopy fixed set KhK (and G(ξu)) may also be identified with the space

of sections of the associated fibre bundle KK
def
= EK ×K K → BK , where again the

action of K on itself is by conjugation. Yet one more tantalizing connection arises
from the following folklore identification. Because we cannot find a reference, we
give a brief outline of the proof.

Lemma 4.4. The bundle KK = EK ×K K → BK is homotopy equivalent to the
free loop space fibration BS1

K → BK .

Proof. We outline the proof in steps.
Step 1. First define an action (K ×K)×K → K by (g, h) ·k = g ·k ·h−1. Then

it is straightforward to show that φ : (EK ×EK)/K → K(K×K), φ([x, y]) = [x, y, e],
is a homeomorphism, where K acts on EK × EK diagonally (on the right in both
factors), K(K×K) is the Borel construction for the action defined above and e is the
identity of K. An inverse is given by φ−1([x, y, e]) = [x, y].

Step 2. Define a map θ : (EK ×EK)/K → BK by composing φ with K(K×K) →
B(K×K) � BK ×BK → BK , where the last map is projection onto the first factor.
The fibre is F = {[x̄, ȳ] | [x] = [x̄]}, where [x] is fixed in BK . Define maps β : EK →
F and γ : F → EK by β(y) = [x, y] and γ([x̄, ȳ]) = ȳ·k where k is the unique element
of K such that x̄ = x ·k. Notice that we are using the fact that K acts freely on EK .
We then see that F = EK and, since θ is a fibration, (EK × EK)/K � BK . Note
that a homotopy inverse to θ is given by σ : BK → (EK × EK)/K, σ([x]) = [x, x].
Furthermore, note that the following triangle commutes (where ∆ is the diagonal,
∆(z) = (z, z)).

BK
φ◦σ

�
��

∆ �����
���

���
�

K(K×K)

p

��
BK × BK

since pφσ([x]) = p([x, x, e]) = [x, x] = ([x], [x]).
Step 3. Note that KK consists of elements [x, k] with [x, k] = [x̄, k̄] if and only

if there is h ∈ K such that x · h = x̄ and hkh−1 = k̄. Define ψ : KK → K(K×K)

by ψ([x, y] = [x, x, y]. Then the following square is a pullback (and a homotopy
pullback since K(K×K) → BK × BK is a fibration).

KK
ψ ��

q

��

K(K×K)

p

��
BK

∆ �� BK × BK

Since it is a homotopy pullback, we can replace K(K×K) → BK × BK by the
homotopy equivalent ∆: BK → BK ×BK as shown in Step 2. We therefore obtain
KK as the homotopy pullback of ∆ over itself. But this is well-known (see [4,
Theorem 5.11]); specifically, we have the following homotopy commutative diagram
where the left square is a homotopy pullback (and the vertical maps are the usual
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1526 YVES FÉLIX AND JOHN OPREA

evaluations):

BS1

K
��

ev

��

B
[0,1]
K

� ��

(ev0,ev1)

��

BK

∆
������������

BK
∆ �� BK × BK

Thus, the free loop space BS1

K also arises as the homotopy pullback of ∆ over itself.
Hence, BS1

K � KK . �
Note that the free loop space has played and continues to play important roles

in both geometry and homotopy theory (see [4] for example). Finally, we have the
identification of the gauge group of the universal bundle with the space of sections
of the free loop fibration on BK ,

G(ξu) = Γ(BS1

K → BK).

By Theorem 4.2, we then know the rational homotopy groups of this intriguing
space of sections.
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