On the localization principle for the automorphisms of pseudoellipsoids
HTML articles powered by AMS MathViewer
- by Mario Landucci and Andrea Spiro
- Proc. Amer. Math. Soc. 137 (2009), 1339-1345
- DOI: https://doi.org/10.1090/S0002-9939-08-09726-8
- Published electronically: December 3, 2008
- PDF | Request permission
Abstract:
We show that Alexander’s extendibility theorem for a local automorphism of the unit ball is valid also for a local automorphism $f$ of a pseudoellipsoid $\mathcal {E}^n_{(p_1, \dots , p_{k})}\overset {\text {def}}{=} \{ z \in \mathbb {C}^n : \sum _{j= 1}^{n - k}|z_j|^2 + |z_{n-k+1}|^{2 p_1} + \dots + |z_n|^{2 p_{k}} < 1\}$, provided that $f$ is defined on a region $\mathcal {U} \subset \mathcal {E}^n_{(p)}$ such that: i) $\partial \mathcal {U} \cap \partial \mathcal {E}^n_{(p)}$ contains an open set of strongly pseudoconvex points; ii) $\mathcal {U}\cap \{ z_i = 0 \} \neq \emptyset$ for any $n-k +1 \leq i \leq n$. By the counterexamples we exhibit, such hypotheses can be considered as optimal.References
- H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249–256. MR 352531, DOI 10.1007/BF01351851
- G. Dini and A. Selvaggi Primicerio, Localization principle of automorphisms on generalized pseudoellipsoids, J. Geom. Anal. 7 (1997), no. 4, 575–584. MR 1669231, DOI 10.1007/BF02921633
- Franc Forstnerič and Jean-Pierre Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), no. 2, 239–252. MR 919504, DOI 10.1007/BF01461721
- Kang-Tae Kim, Mario Landucci, and Andrea F. Spiro, Factorization of proper holomorphic mappings through Thullen domains, Pacific J. Math. 189 (1999), no. 2, 293–310. MR 1696125, DOI 10.2140/pjm.1999.189.293
- Kang-Tae Kim and Andrea F. Spiro, Moduli space of ramified holomorphic coverings of $B^2$, Complex geometric analysis in Pohang (1997), Contemp. Math., vol. 222, Amer. Math. Soc., Providence, RI, 1999, pp. 227–239. MR 1653055, DOI 10.1090/conm/222/03169
- M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), no. 2, 807–811. MR 732122, DOI 10.1090/S0002-9947-1984-0732122-5
- Mario Landucci and Andrea Spiro, Proper holomorphic maps between complete Reinhardt domains in $\textbf {C}^2$, Complex Variables Theory Appl. 29 (1996), no. 1, 9–25. MR 1381999, DOI 10.1080/17476939608814870
- S. I. Pinčuk, The analytic continuation of holomorphic mappings, Mat. Sb. (N.S.) 98(140) (1975), no. 3(11), 416–435, 495–496 (Russian). MR 0393562
- S. I. Pinčuk, Holomorphic mappings of real-analytic hypersurfaces, Mat. Sb. (N.S.) 105(147) (1978), no. 4, 574–593, 640 (Russian). MR 496595
- Walter Rudin, Holomorphic maps that extend to automorphisms of a ball, Proc. Amer. Math. Soc. 81 (1981), no. 3, 429–432. MR 597656, DOI 10.1090/S0002-9939-1981-0597656-8
- E. Vesentini, Capitoli scelti della teoria delle funzioni olomorfe, Unione Matematica Italiana, Bologna: Pitagora Ed., 1984.
- S. M. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51 (1979), no. 2, 155–169. MR 528021, DOI 10.1007/BF01390226
Bibliographic Information
- Mario Landucci
- Affiliation: Dip. Matematica Applicata “G. Sansone”, Università di Firenze, Via di Santa Marta 3, I-50139 Firenze, Italy
- Email: mario.landucci@unifi.it
- Andrea Spiro
- Affiliation: Dip. Matematica e Informatica, Università di Camerino, Via Madonna delle Carceri, I-62032 Camerino (Macerata), Italy
- Email: andrea.spiro@unicam.it
- Received by editor(s): June 25, 2007
- Received by editor(s) in revised form: February 17, 2008
- Published electronically: December 3, 2008
- Communicated by: Mei-Chi Shaw
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1339-1345
- MSC (2000): Primary 32H12, 32H02, 32H35
- DOI: https://doi.org/10.1090/S0002-9939-08-09726-8
- MathSciNet review: 2465657