Linear isometries between spaces of vector-valued Lipschitz functions
HTML articles powered by AMS MathViewer
- by A. Jiménez-Vargas and Moisés Villegas-Vallecillos
- Proc. Amer. Math. Soc. 137 (2009), 1381-1388
- DOI: https://doi.org/10.1090/S0002-9939-08-09733-5
- Published electronically: October 20, 2008
- PDF | Request permission
Abstract:
In this paper we state a Lipschitz version of a theorem due to Cambern concerning into linear isometries between spaces of vector-valued continuous functions and deduce a Lipschitz version of a celebrated theorem due to Jerison concerning onto linear isometries between such spaces.References
- Michael Cambern, A Holsztyński theorem for spaces of continuous vector-valued functions, Studia Math. 63 (1978), no. 3, 213–217. MR 515491, DOI 10.4064/sm-63-3-213-217
- Krzysztof Jarosz and Vijay D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 305 (1988), no. 1, 193–206. MR 920154, DOI 10.1090/S0002-9947-1988-0920154-7
- T. M. Jenkins, Banach Spaces of Lipschitz Functions on an Abstract Metric Space, Ph.D. Thesis, Yale University, 1968.
- Meyer Jerison, The space of bounded maps into a Banach space, Ann. of Math. (2) 52 (1950), 309–327. MR 36942, DOI 10.2307/1969472
- A. Jiménez-Vargas and Moisés Villegas-Vallecillos, Into linear isometries between spaces of Lipschitz functions, Houston J. Math. 34 (2008), 1165–1184.
- K. de Leeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961/62), 55–66. MR 140927, DOI 10.4064/sm-21-1-55-66
- E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), no. 1-2, 58–74. MR 599476, DOI 10.1007/BF02761849
- W. P. Novinger, Linear isometries of subspaces of spaces of continuous functions, Studia Math. 53 (1975), no. 3, 273–276. MR 417770, DOI 10.4064/sm-53-3-273-276
- Ashoke K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions, Canadian J. Math. 20 (1968), 1150–1164. MR 236685, DOI 10.4153/CJM-1968-109-9
- M. H. Vasavada, Closed Ideals and Linear Isometries of Certain Function Spaces, Ph.D. Thesis, Wisconsin University, 1969.
- Nik Weaver, Isometries of noncompact Lipschitz spaces, Canad. Math. Bull. 38 (1995), no. 2, 242–249. MR 1335105, DOI 10.4153/CMB-1995-035-3
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645, DOI 10.1142/4100
Bibliographic Information
- A. Jiménez-Vargas
- Affiliation: Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04071, Almería, Spain
- Email: ajimenez@ual.es
- Moisés Villegas-Vallecillos
- Affiliation: Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04071, Almería, Spain
- Email: mvv042@alboran.ual.es
- Received by editor(s): April 28, 2008
- Published electronically: October 20, 2008
- Additional Notes: The first author was partially supported by Junta de Andalucía grants FQM-1215 and FQM-1438, and by MEC grant MTM2006-4837
- Communicated by: Nigel J. Kalton
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 1381-1388
- MSC (2000): Primary 46B04, 46E40; Secondary 46E15
- DOI: https://doi.org/10.1090/S0002-9939-08-09733-5
- MathSciNet review: 2465663