Totally free arrangements of hyperplanes
HTML articles powered by AMS MathViewer
- by Takuro Abe, Hiroaki Terao and Masahiko Yoshinaga
- Proc. Amer. Math. Soc. 137 (2009), 1405-1410
- DOI: https://doi.org/10.1090/S0002-9939-08-09755-4
- Published electronically: November 5, 2008
- PDF | Request permission
Abstract:
A central arrangement $\mathcal {A}$ of hyperplanes in an $\ell$-dimensional vector space $V$ is said to be totally free if a multiarrangement $(\mathcal {A}, m)$ is free for any multiplicity $m : \mathcal {A}\rightarrow \mathbb {Z} _{> 0}$. It has been known that $\mathcal {A}$ is totally free whenever $\ell \le 2$. In this article, we will prove that there does not exist any totally free arrangement other than the obvious ones, that is, a product of one-dimensional arrangements and two-dimensional ones.References
- Takuro Abe, Free and non-free multiplicity on the deleted $A_3$ arrangement, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 7, 99–103. MR 2361419
- T. Abe, K. Nuida and Y. Numata, Bicolor-eliminable graphs and free multiplicities on the braid arrangement. arXiv:0712.4110.
- Takuro Abe, Hiroaki Terao, and Max Wakefield, The characteristic polynomial of a multiarrangement, Adv. Math. 215 (2007), no. 2, 825–838. MR 2355609, DOI 10.1016/j.aim.2007.04.019
- Takuro Abe, Hiroaki Terao, and Max Wakefield, The Euler multiplicity and addition-deletion theorems for multiarrangements, J. Lond. Math. Soc. (2) 77 (2008), no. 2, 335–348. MR 2400395, DOI 10.1112/jlms/jdm110
- T. Abe and M. Yoshinaga, Coxeter multiarrangements with quasi-constant multiplicities. arXiv:0708.3228.
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- James G. Oxley, Matroid theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. MR 1207587
- W. T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1–47. MR 179781, DOI 10.6028/jres.069B.001
- Masahiko Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449–454. MR 2077250, DOI 10.1007/s00222-004-0359-2
- Masahiko Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126–134. MR 2105827, DOI 10.1112/S0024609304003704
- M. Yoshinaga, On the extendability of free multiarrangements. arXiv:0710.5044.
- Günter M. Ziegler, Multiarrangements of hyperplanes and their freeness, Singularities (Iowa City, IA, 1986) Contemp. Math., vol. 90, Amer. Math. Soc., Providence, RI, 1989, pp. 345–359. MR 1000610, DOI 10.1090/conm/090/1000610
Bibliographic Information
- Takuro Abe
- Affiliation: Department of Mathematics, Hokkaido University, Kita-10, Nishi-8, Kita-Ku, Sapporo, 060-0810, Japan
- Address at time of publication: Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
- Email: abetaku@math.kyoto-u.ac.jp
- Hiroaki Terao
- Affiliation: Department of Mathematics, Hokkaido University, Kita-10, Nishi-8, Kita-Ku, Sapporo, 060-0810, Japan
- MR Author ID: 191642
- Email: terao@math.sci.hokudai.ac.jp
- Masahiko Yoshinaga
- Affiliation: Department of Mathematics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- Email: myoshina@math.kobe-u.ac.jp
- Received by editor(s): May 16, 2008
- Published electronically: November 5, 2008
- Communicated by: Martin Lorenz
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1405-1410
- MSC (2000): Primary 32S22
- DOI: https://doi.org/10.1090/S0002-9939-08-09755-4
- MathSciNet review: 2465666