Gröbnerian Dickson polynomials
HTML articles powered by AMS MathViewer
- by Müfi̇t Sezer and Özgün Ünlü
- Proc. Amer. Math. Soc. 137 (2009), 1169-1173
- DOI: https://doi.org/10.1090/S0002-9939-08-09758-X
- Published electronically: November 17, 2008
- PDF | Request permission
Abstract:
Let $F$ be a finite field and $k$ be a positive integer. We compute the reduced Gröbner basis for the Hilbert ideal of $GL_k(F)$ in terms of Dickson invariants of its subgroups.References
- H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (1996), no. 4, 307–336. MR 1424447, DOI 10.1007/BF02549211
- Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75–98. MR 1500882, DOI 10.1090/S0002-9947-1911-1500882-4
- Robert Steinberg, On Dickson’s theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 699–707. MR 927606
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. MR 711066, DOI 10.1090/conm/019/711066
Bibliographic Information
- Müfi̇t Sezer
- Affiliation: Department of Mathematics, Bilkent University, Ankara 06800, Turkey
- MR Author ID: 703561
- Özgün Ünlü
- Affiliation: Department of Mathematics, Bilkent University, Ankara 06800, Turkey
- Received by editor(s): February 25, 2008
- Published electronically: November 17, 2008
- Communicated by: Bernd Ulrich
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1169-1173
- MSC (2000): Primary 13A50
- DOI: https://doi.org/10.1090/S0002-9939-08-09758-X
- MathSciNet review: 2465636