On the Lusternik-Schnirelmann category of spaces with 2-dimensional fundamental group
HTML articles powered by AMS MathViewer
- by Alexander N. Dranishnikov
- Proc. Amer. Math. Soc. 137 (2009), 1489-1497
- DOI: https://doi.org/10.1090/S0002-9939-08-09770-0
- Published electronically: November 25, 2008
- PDF | Request permission
Abstract:
The following inequality \[ \mathrm {cat}_{\mathrm {LS}} X\le \mathrm {cat}_{\mathrm {LS}} Y+\bigg \lceil \frac {hd(X)-r}{r+1}\bigg \rceil \] holds for every locally trivial fibration $f:X\to Y$ between $ANE$ spaces which admits a section and has the $r$-connected fiber, where $hd(X)$ is the homotopical dimension of $X$. We apply this inequality to prove that \[ \mathrm {cat}_{\mathrm {LS}} X\le cd(\pi _1(X))+\bigg \lceil \frac {\dim X-1}{2}\bigg \rceil \] for every complex $X$ with $cd(\pi _1(X))\le 2$, where $cd(\pi _1(X))$ denotes the cohomological dimension of the fundamental group of $X$.References
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- Cuvilliez, M.: LS-catégorie et $k$-monomorphisme. Thèse, Université Catholique de Louvain, 1998.
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- Alexander N. Dranishnikov, Mikhail G. Katz, and Yuli B. Rudyak, Small values of the Lusternik-Schnirelman category for manifolds, Geom. Topol. 12 (2008), no. 3, 1711–1727. “Schnirelman” in title changed to “Schnirelmann” on journal site. MR 2421138, DOI 10.2140/gt.2008.12.1711
- Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518. MR 85510, DOI 10.2307/1970062
- Mikhail G. Katz and Yuli B. Rudyak, Lusternik-Schnirelmann category and systolic category of low-dimensional manifolds, Comm. Pure Appl. Math. 59 (2006), no. 10, 1433–1456. MR 2248895, DOI 10.1002/cpa.20146
- John Oprea and John Walsh, Quotient maps, group actions and Lusternik-Schnirelmann category, Topology Appl. 117 (2002), no. 3, 285–305. MR 1874091, DOI 10.1016/S0166-8641(01)00021-9
- Phillip A. Ostrand, Dimension of metric spaces and Hilbert’s problem $13$, Bull. Amer. Math. Soc. 71 (1965), 619–622. MR 177391, DOI 10.1090/S0002-9904-1965-11363-5
- M. M. Postnikov, Classification of the continuous mappings of an arbitrary $n$-dimensional polyhedron into a connected topological space which is aspherical in dimensions greater than unity and less than $n$, Doklady Akad. Nauk SSSR (N.S.) 67 (1949), 427–430 (Russian). MR 0033522
- John Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968), 361–364. MR 223439, DOI 10.1090/S0002-9904-1968-11955-X
- Jeff Strom, Lusternik-Schnirelmann category of spaces with free fundamental group, Algebr. Geom. Topol. 7 (2007), 1805–1808. MR 2366179, DOI 10.2140/agt.2007.7.1805
- A. S. Švarc, The genus of a fibered space, Trudy Moskov. Mat. Obšč. 10 (1961), 217–272 (Russian). MR 0154284
- Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. MR 240177, DOI 10.1016/0021-8693(69)90030-1
- Emery Thomas, Seminar on fiber spaces, Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. Lectures delivered in 1964 in Berkeley and 1965 in Zürich; Berkeley notes by J. F. McClendon. MR 0203733, DOI 10.1007/BFb0097864
Bibliographic Information
- Alexander N. Dranishnikov
- Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32601-8105
- MR Author ID: 212177
- Email: dranish@math.ufl.edu
- Received by editor(s): September 25, 2007
- Received by editor(s) in revised form: April 27, 2008
- Published electronically: November 25, 2008
- Additional Notes: The author was supported by NSF grant DMS-0604494
- Communicated by: Daniel Ruberman
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1489-1497
- MSC (2000): Primary 55M30
- DOI: https://doi.org/10.1090/S0002-9939-08-09770-0
- MathSciNet review: 2465675