On the linearity of torsion-free nilpotent groups of finite Morley rank
HTML articles powered by AMS MathViewer
- by Tuna Altinel and John S. Wilson
- Proc. Amer. Math. Soc. 137 (2009), 1813-1821
- DOI: https://doi.org/10.1090/S0002-9939-08-09695-0
- Published electronically: December 15, 2008
- PDF | Request permission
Abstract:
It is proved that every torsion-free nilpotent group of finite Morley rank is isomorphic to a matrix group over a field of characteristic zero.References
- I. D. Ado, The representation of Lie algebras by matrices, Uspehi Matem. Nauk (N.S.) 2 (1947), no. 6(22), 159–173 (Russian). MR 0027753
- Andreas Baudisch, A new uncountably categorical group, Trans. Amer. Math. Soc. 348 (1996), no. 10, 3889–3940. MR 1351488, DOI 10.1090/S0002-9947-96-01623-6
- Alexandre Borovik and Ali Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1321141
- Gregory L. Cherlin and Joachim Reineke, Categoricity and stability of commutative rings, Ann. Math. Logic 9 (1976), no. 4, 367–399. MR 480007, DOI 10.1016/0003-4843(76)90017-6
- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3
- O. Frécon. Linearity of solvable groups of finite Morley rank. Preprint, 2007.
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Nathan Jacobson, Basic algebra. II, 2nd ed., W. H. Freeman and Company, New York, 1989. MR 1009787
- Angus Macintyre, On $\omega _{1}$-categorical theories of fields, Fund. Math. 71 (1971), no. 1, 1–25. (errata insert). MR 290954, DOI 10.4064/fm-71-1-1-25
- Ali Nesin, Nonassociative rings of finite Morley rank, The model theory of groups (Notre Dame, IN, 1985–1987) Notre Dame Math. Lectures, vol. 11, Univ. Notre Dame Press, Notre Dame, IN, 1989, pp. 117–137. MR 985343
- I. N. Stewart, An algebraic treatment of Mal′cev’s theorems concerning nilpotent Lie groups and their Lie algebras, Compositio Math. 22 (1970), 289–312. MR 288158
- Robert B. Warfield Jr., Nilpotent groups, Lecture Notes in Mathematics, Vol. 513, Springer-Verlag, Berlin-New York, 1976. MR 0409661, DOI 10.1007/BFb0080152
- B. I. Zil′ber, Rings whose theory is $\aleph _{1}$-categorical, Algebra i Logika 13 (1974), 168–187, 235. MR 0366650
Bibliographic Information
- Tuna Altinel
- Affiliation: Université de Lyon, Université Lyon 1, CNRS UMR 5208 Institut Camille Jordan, INSA de Lyon, F-69621, Ecole Centrale de Lyon, 43 blvd du 11 novembre 1918, 69622 Villeurbanne cedex, France
- Email: altinel@math.univ-lyon1.fr
- John S. Wilson
- Affiliation: University College, Oxford OX1 4BH, United Kingdom
- Email: wilsonjs@maths.ox.ac.uk
- Received by editor(s): March 3, 2008
- Received by editor(s) in revised form: July 9, 2008
- Published electronically: December 15, 2008
- Additional Notes: The first author was supported by MODNET, an FP6 Marie Curie Research Training Network in Model Theory and its Applications, funded by the European Commission under contract number MRTN-CT-2004-512234 (MODNET)
- Communicated by: Julia Knight
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1813-1821
- MSC (2000): Primary 03C60, 20F16
- DOI: https://doi.org/10.1090/S0002-9939-08-09695-0
- MathSciNet review: 2470842