## Jack polynomials and the coinvariant ring of $G(r,p,n)$

HTML articles powered by AMS MathViewer

- by Stephen Griffeth PDF
- Proc. Amer. Math. Soc.
**137**(2009), 1621-1629 Request permission

## Abstract:

We study the coinvariant ring of the complex reflection group $G(r,p,n)$ as a module for the corresponding rational Cherednik algebra $\mathbb {H}$ and its generalized graded affine Hecke subalgebra $\mathcal {H}$. We construct a basis consisting of non-symmetric Jack polynomials and, using this basis, decompose the coinvariant ring into irreducible modules for $\mathcal {H}$. The basis consists of certain non-symmetric Jack polynomials whose leading terms are the “descent monomials” for $G(r,p,n)$ recently studied by Adin, Brenti, and Roichman as well as Bagno and Biagoli. The irreducible $\mathcal {H}$-submodules of the coinvariant ring are their “colored descent representations”.## References

- Ron M. Adin, Francesco Brenti, and Yuval Roichman,
*Descent representations and multivariate statistics*, Trans. Amer. Math. Soc.**357**(2005), no. 8, 3051–3082. MR**2135735**, DOI 10.1090/S0002-9947-04-03494-4 - Eli Bagno and Riccardo Biagioli,
*Colored-descent representations of complex reflection groups $G(r,p,n)$*, Israel J. Math.**160**(2007), 317–347. MR**2342500**, DOI 10.1007/s11856-007-0065-z - C. Dezelee,
*Generalized graded Hecke algebra for complex reflection group of type $G(r,1,n)$*, arXiv:math/0605410. - V. G. Drinfel′d,
*Degenerate affine Hecke algebras and Yangians*, Funktsional. Anal. i Prilozhen.**20**(1986), no. 1, 69–70 (Russian). MR**831053** - Charles F. Dunkl,
*Harmonic polynomials and peak sets of reflection groups*, Geom. Dedicata**32**(1989), no. 2, 157–171. MR**1029672**, DOI 10.1007/BF00147428 - C. F. Dunkl and E. M. Opdam,
*Dunkl operators for complex reflection groups*, Proc. London Math. Soc. (3)**86**(2003), no. 1, 70–108. MR**1971464**, DOI 10.1112/S0024611502013825 - Pavel Etingof and Victor Ginzburg,
*Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism*, Invent. Math.**147**(2002), no. 2, 243–348. MR**1881922**, DOI 10.1007/s002220100171 - A. M. Garsia and D. Stanton,
*Group actions of Stanley-Reisner rings and invariants of permutation groups*, Adv. in Math.**51**(1984), no. 2, 107–201. MR**736732**, DOI 10.1016/0001-8708(84)90005-7 - Adriano M. Garsia,
*Combinatorial methods in the theory of Cohen-Macaulay rings*, Adv. in Math.**38**(1980), no. 3, 229–266. MR**597728**, DOI 10.1016/0001-8708(80)90006-7 - Iain Gordon,
*Baby Verma modules for rational Cherednik algebras*, Bull. London Math. Soc.**35**(2003), no. 3, 321–336. MR**1960942**, DOI 10.1112/S0024609303001978 - S. Griffeth,
*Rational Cherednik algebras and coinvariant rings*, Ph.D. thesis, University of Wisconsin, Madison, August 2006. - S. Griffeth,
*Orthogonal functions generalizing Jack polynomials*, arXiv:0707.0251. - S. Griffeth,
*Towards a combinatorial representation theory for the rational Cherednik algebra of type $G(r,p,n)$*, arXiv:math/0612733. - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Friedrich Knop and Siddhartha Sahi,
*A recursion and a combinatorial formula for Jack polynomials*, Invent. Math.**128**(1997), no. 1, 9–22. MR**1437493**, DOI 10.1007/s002220050134 - Arun Ram and Anne V. Shepler,
*Classification of graded Hecke algebras for complex reflection groups*, Comment. Math. Helv.**78**(2003), no. 2, 308–334. MR**1988199**, DOI 10.1007/s000140300013

## Additional Information

**Stephen Griffeth**- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: griffeth@math.umn.edu
- Received by editor(s): May 30, 2008
- Received by editor(s) in revised form: July 13, 2008
- Published electronically: December 11, 2008
- Communicated by: Jim Haglund
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 1621-1629 - MSC (2000): Primary 05E10
- DOI: https://doi.org/10.1090/S0002-9939-08-09697-4
- MathSciNet review: 2470820