Compact factorization of differentiable mappings
HTML articles powered by AMS MathViewer
- by Raffaella Cilia, Joaquín M. Gutiérrez and Giuseppe Saluzzo
- Proc. Amer. Math. Soc. 137 (2009), 1743-1752
- DOI: https://doi.org/10.1090/S0002-9939-08-09716-5
- Published electronically: November 10, 2008
- PDF | Request permission
Abstract:
Results on factorization (through linear operators) of polynomials and holomorphic mappings between Banach spaces have been obtained in recent years by several authors. In the present paper, we obtain a factorization result for differentiable mappings through compact operators. Namely, we prove that a mapping $f:X\to Y$ between real Banach spaces is differentiable and its derivative $f’$ is a compact mapping with values in the space ${\mathcal K}(X,Y)$ of compact operators from $X$ into $Y$ if and only if $f$ may be written in the form $f=g\circ S$, where the intermediate space is normed, $S$ is a precompact operator, and $g$ is a Gâteaux differentiable mapping with some additional properties. We also show that if $f’$ is uniformly continuous on bounded sets and takes values in ${\mathcal K}(X,Y)$, then $f’$ is compact if and only if $f$ is weakly uniformly continuous on bounded sets.References
- Richard M. Aron, Weakly uniformly continuous and weakly sequentially continuous entire functions, Advances in holomorphy (Proc. Sem. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977) North-Holland Math. Stud., vol. 34, North-Holland, Amsterdam-New York, 1979, pp. 47–66. MR 0632031
- R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195–216. MR 552473, DOI 10.1515/crll.1980.313.195
- Richard M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Functional Analysis 21 (1976), no. 1, 7–30. MR 0402504, DOI 10.1016/0022-1236(76)90026-4
- F. Bombal, J. M. Gutiérrez, and I. Villanueva, Derivative and factorization of holomorphic functions, J. Math. Anal. Appl. 348 (2008), 444–453.
- D. Carando, V. Dimant, B. Duarte, and S. Lassalle, $K$-bounded polynomials, Math. Proc. R. Ir. Acad. 98A (1998), no. 2, 159–171. MR 1759429
- Soo Bong Chae, Holomorphy and calculus in normed spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 92, Marcel Dekker, Inc., New York, 1985. With an appendix by Angus E. Taylor. MR 788158
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- J. Ferrera, J. Gómez Gil, and J. G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc. 15 (1983), no. 3, 260–264. MR 697129, DOI 10.1112/blms/15.3.260
- Manuel González and Joaquín M. Gutiérrez, Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), no. 2, 117–133. MR 1389759
- Manuel González and Joaquín M. Gutiérrez, Schauder type theorems for differentiable and holomorphic mappings, Monatsh. Math. 122 (1996), no. 4, 325–343. MR 1418120, DOI 10.1007/BF01326032
- Petr Hájek, Smooth functions on $C(K)$, Israel J. Math. 107 (1998), 237–252. MR 1658563, DOI 10.1007/BF02764011
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257, DOI 10.1007/978-3-322-90559-8
- Sadayuki Yamamuro, Differential calculus in topological linear spaces, Lecture Notes in Mathematics, Vol. 374, Springer-Verlag, Berlin-New York, 1974. MR 0488118, DOI 10.1007/BFb0061580
Bibliographic Information
- Raffaella Cilia
- Affiliation: Dipartimento di Matematica, Facoltà di Scienze, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- MR Author ID: 326112
- Email: cilia@dmi.unict.it
- Joaquín M. Gutiérrez
- Affiliation: Departamento de Matemática Aplicada, ETS de Ingenieros Industriales, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
- MR Author ID: 311216
- Email: jgutierrez@etsii.upm.es
- Giuseppe Saluzzo
- Affiliation: Dipartimento di Matematica, Facoltà di Scienze, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Email: saluzzo@dmi.unict.it
- Received by editor(s): June 10, 2008
- Published electronically: November 10, 2008
- Additional Notes: The first and third authors were supported in part by G.N.A.M.P.A., Italy
The first and second authors were supported in part by Dirección General de Investigación, MTM 2006–03531 (Spain) - Communicated by: Nigel J. Kalton
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1743-1752
- MSC (2000): Primary 46G05; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-08-09716-5
- MathSciNet review: 2470833