Induced quasi-actions: A remark
HTML articles powered by AMS MathViewer
- by Bruce Kleiner and Bernhard Leeb
- Proc. Amer. Math. Soc. 137 (2009), 1561-1567
- DOI: https://doi.org/10.1090/S0002-9939-08-09742-6
- Published electronically: November 13, 2008
- PDF | Request permission
Abstract:
We observe that the notion of an induced representation has an analog for quasi-actions and give some applications.References
- A. Reiter Ahlin, The large scale geometry of products of trees, Geom. Dedicata 92 (2002), 179–184. Dedicated to John Stallings on the occasion of his 65th birthday. MR 1934017, DOI 10.1023/A:1019630514124
- M. Bonk, B. Kleiner, and S. Merenkov, Rigidity of Schottky sets, Amer. J. Math., to appear.
- Marc Bourdon and Hervé Pajot, Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv. 75 (2000), no. 4, 701–736. MR 1789183, DOI 10.1007/s000140050146
- Richard Chow, Groups quasi-isometric to complex hyperbolic space, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1757–1769. MR 1329530, DOI 10.1090/S0002-9947-96-01522-X
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213. MR 624814
- A. Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990), no. 1, 87–121. MR 1000145, DOI 10.1090/S0002-9947-1990-1000145-X
- Michael Kapovich, Bruce Kleiner, and Bernhard Leeb, Quasi-isometries and the de Rham decomposition, Topology 37 (1998), no. 6, 1193–1211. MR 1632904, DOI 10.1016/S0040-9383(97)00091-8
- M. Kapovich, B. Kleiner, B. Leeb, and R. Schwartz, private communication.
- Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197 (1998). MR 1608566, DOI 10.1007/BF02698902
- Bruce Kleiner and Bernhard Leeb, Groups quasi-isometric to symmetric spaces, Comm. Anal. Geom. 9 (2001), no. 2, 239–260. MR 1846203, DOI 10.4310/CAG.2001.v9.n2.a1
- Bernhard Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 326, Universität Bonn, Mathematisches Institut, Bonn, 2000. MR 1934160
- Vladimir Markovic, Quasisymmetric groups, J. Amer. Math. Soc. 19 (2006), no. 3, 673–715. MR 2220103, DOI 10.1090/S0894-0347-06-00518-2
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Lee Mosher, Michah Sageev, and Kevin Whyte, Quasi-actions on trees. I. Bounded valence, Ann. of Math. (2) 158 (2003), no. 1, 115–164. MR 1998479, DOI 10.4007/annals.2003.158.115
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833
- Pekka Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318–346. MR 861709, DOI 10.1007/BF02796595
- Xiangdong Xie, Quasi-isometric rigidity of Fuchsian buildings, Topology 45 (2006), no. 1, 101–169. MR 2170496, DOI 10.1016/j.top.2005.06.005
Bibliographic Information
- Bruce Kleiner
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
- Address at time of publication: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
- Email: bkleiner@cims.nyu.edu
- Bernhard Leeb
- Affiliation: Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany
- Email: b.l@lmu.de
- Received by editor(s): February 25, 2008
- Received by editor(s) in revised form: June 23, 2008
- Published electronically: November 13, 2008
- Additional Notes: The first author was partially supported by NSF Grant DMS 0701515
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 1561-1567
- MSC (2000): Primary 20F65
- DOI: https://doi.org/10.1090/S0002-9939-08-09742-6
- MathSciNet review: 2470813