## Induced quasi-actions: A remark

HTML articles powered by AMS MathViewer

- by Bruce Kleiner and Bernhard Leeb PDF
- Proc. Amer. Math. Soc.
**137**(2009), 1561-1567 Request permission

## Abstract:

We observe that the notion of an induced representation has an analog for quasi-actions and give some applications.## References

- A. Reiter Ahlin,
*The large scale geometry of products of trees*, Geom. Dedicata**92**(2002), 179–184. Dedicated to John Stallings on the occasion of his 65th birthday. MR**1934017**, DOI 10.1023/A:1019630514124 - M. Bonk, B. Kleiner, and S. Merenkov,
*Rigidity of Schottky sets*, Amer. J. Math., to appear. - Marc Bourdon and Hervé Pajot,
*Rigidity of quasi-isometries for some hyperbolic buildings*, Comment. Math. Helv.**75**(2000), no. 4, 701–736. MR**1789183**, DOI 10.1007/s000140050146 - Richard Chow,
*Groups quasi-isometric to complex hyperbolic space*, Trans. Amer. Math. Soc.**348**(1996), no. 5, 1757–1769. MR**1329530**, DOI 10.1090/S0002-9947-96-01522-X - Andrew Casson and Douglas Jungreis,
*Convergence groups and Seifert fibered $3$-manifolds*, Invent. Math.**118**(1994), no. 3, 441–456. MR**1296353**, DOI 10.1007/BF01231540 - David Gabai,
*Convergence groups are Fuchsian groups*, Ann. of Math. (2)**136**(1992), no. 3, 447–510. MR**1189862**, DOI 10.2307/2946597 - M. Gromov,
*Hyperbolic manifolds, groups and actions*, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213. MR**624814** - A. Hinkkanen,
*Abelian and nondiscrete convergence groups on the circle*, Trans. Amer. Math. Soc.**318**(1990), no. 1, 87–121. MR**1000145**, DOI 10.1090/S0002-9947-1990-1000145-X - Michael Kapovich, Bruce Kleiner, and Bernhard Leeb,
*Quasi-isometries and the de Rham decomposition*, Topology**37**(1998), no. 6, 1193–1211. MR**1632904**, DOI 10.1016/S0040-9383(97)00091-8 - M. Kapovich, B. Kleiner, B. Leeb, and R. Schwartz, private communication.
- Bruce Kleiner and Bernhard Leeb,
*Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings*, Inst. Hautes Études Sci. Publ. Math.**86**(1997), 115–197 (1998). MR**1608566**, DOI 10.1007/BF02698902 - Bruce Kleiner and Bernhard Leeb,
*Groups quasi-isometric to symmetric spaces*, Comm. Anal. Geom.**9**(2001), no. 2, 239–260. MR**1846203**, DOI 10.4310/CAG.2001.v9.n2.a1 - Bernhard Leeb,
*A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry*, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 326, Universität Bonn, Mathematisches Institut, Bonn, 2000. MR**1934160** - Vladimir Markovic,
*Quasisymmetric groups*, J. Amer. Math. Soc.**19**(2006), no. 3, 673–715. MR**2220103**, DOI 10.1090/S0894-0347-06-00518-2 - G. D. Mostow,
*Strong rigidity of locally symmetric spaces*, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR**0385004** - Lee Mosher, Michah Sageev, and Kevin Whyte,
*Quasi-actions on trees. I. Bounded valence*, Ann. of Math. (2)**158**(2003), no. 1, 115–164. MR**1998479**, DOI 10.4007/annals.2003.158.115 - Pierre Pansu,
*Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un*, Ann. of Math. (2)**129**(1989), no. 1, 1–60 (French, with English summary). MR**979599**, DOI 10.2307/1971484 - Dennis Sullivan,
*On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions*, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR**624833** - Pekka Tukia,
*On quasiconformal groups*, J. Analyse Math.**46**(1986), 318–346. MR**861709**, DOI 10.1007/BF02796595 - Xiangdong Xie,
*Quasi-isometric rigidity of Fuchsian buildings*, Topology**45**(2006), no. 1, 101–169. MR**2170496**, DOI 10.1016/j.top.2005.06.005

## Additional Information

**Bruce Kleiner**- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
- Address at time of publication: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
- Email: bkleiner@cims.nyu.edu
**Bernhard Leeb**- Affiliation: Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany
- Email: b.l@lmu.de
- Received by editor(s): February 25, 2008
- Received by editor(s) in revised form: June 23, 2008
- Published electronically: November 13, 2008
- Additional Notes: The first author was partially supported by NSF Grant DMS 0701515
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**137**(2009), 1561-1567 - MSC (2000): Primary 20F65
- DOI: https://doi.org/10.1090/S0002-9939-08-09742-6
- MathSciNet review: 2470813