Optimization of the first eigenvalue in problems involving the $p$-Laplacian
HTML articles powered by AMS MathViewer
- by Fabrizio Cuccu, Behrouz Emamizadeh and Giovanni Porru
- Proc. Amer. Math. Soc. 137 (2009), 1677-1687
- DOI: https://doi.org/10.1090/S0002-9939-08-09769-4
- Published electronically: December 11, 2008
- PDF | Request permission
Abstract:
This paper concerns minimization and maximization of the first eigenvalue in problems involving the $p$-Laplacian, under homogeneous Dirichlet boundary conditions. Physically, in the case of $N=2$ and $p$ close to $2$, our equation models the vibration of a nonhomogeneous membrane $\Omega$ which is fixed along the boundary. Given several materials (with different densities) of total extension $|\Omega |$, we investigate the location of these material inside $\Omega$ so as to minimize or maximize the first mode in the vibration of the membrane.References
- Aomar Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- Giles Auchmuty, Dual variational principles for eigenvalue problems, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 55–71. MR 843549, DOI 10.1090/pspum/045.1/843549
- John E. Brothers and William P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. MR 929981
- G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann. 276 (1987), no. 2, 225–253. MR 870963, DOI 10.1007/BF01450739
- G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 4, 295–319 (English, with French summary). MR 998605, DOI 10.1016/S0294-1449(16)30320-1
- G. R. Burton and J. B. McLeod, Maximisation and minimisation on classes of rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 3-4, 287–300. MR 1135975, DOI 10.1017/S0308210500014840
- S. Chanillo, D. Grieser, M. Imai, K. Kurata, and I. Ohnishi, Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Comm. Math. Phys. 214 (2000), no. 2, 315–337. MR 1796024, DOI 10.1007/PL00005534
- Fabrizio Cuccu, Kanhaiya Jha, and Giovanni Porru, Geometric properties of solutions to maximization problems, Electron. J. Differential Equations (2003), No. 71, 8. MR 1993779
- Steven J. Cox and Joyce R. McLaughlin, Extremal eigenvalue problems for composite membranes. I, II, Appl. Math. Optim. 22 (1990), no. 2, 153–167, 169–187. MR 1055658, DOI 10.1007/BF01447325
- F. Cuccu and G. Porcu, Existence of solutions in two optimization problems, C. R. Acad. Bulgare Sci. 54 (2001), no. 9, 33–38. MR 1879204
- J. García-Melián and J. Sabina de Lis, Maximum and comparison principles for operators involving the $p$-Laplacian, J. Math. Anal. Appl. 218 (1998), no. 1, 49–65. MR 1601841, DOI 10.1006/jmaa.1997.5732
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Antoine Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. MR 2251558, DOI 10.1007/3-7643-7706-2
- Bernd Kawohl, Marcello Lucia, and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 (2007), no. 4, 407–434. MR 2305874
- Jonas Nycander and Behrouz Emamizadeh, Variational problem for vortices attached to seamounts, Nonlinear Anal. 55 (2003), no. 1-2, 15–24. MR 2001628, DOI 10.1016/S0362-546X(03)00207-4
- Wacław Pielichowski, The optimization of eigenvalue problems involving the $p$-Laplacian, Univ. Iagel. Acta Math. 42 (2004), 109–122. MR 2157626
- Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1078018, DOI 10.1007/978-3-662-02624-3
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. MR 768629, DOI 10.1007/BF01449041
Bibliographic Information
- Fabrizio Cuccu
- Affiliation: Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- MR Author ID: 689288
- Email: fcuccu@unica.it
- Behrouz Emamizadeh
- Affiliation: Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- Email: porru@unica.it
- Giovanni Porru
- Affiliation: Department of Mathematics, The Petroleum Institute, P. O. Box 2533, Abu Dhabi, United Arab Emirates
- Email: bemamizadeh@pi.ac.ae
- Received by editor(s): June 28, 2007
- Published electronically: December 11, 2008
- Communicated by: Chuu-Lian Terng
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1677-1687
- MSC (2000): Primary 35P15, 47A75
- DOI: https://doi.org/10.1090/S0002-9939-08-09769-4
- MathSciNet review: 2470826