Restriction and extension of Fourier multipliers between weighted $L^p$ spaces on $\mathbb {R}^n$ and $\mathbb {T}^n$
HTML articles powered by AMS MathViewer
- by Kenneth F. Andersen and Parasar Mohanty
- Proc. Amer. Math. Soc. 137 (2009), 1689-1697
- DOI: https://doi.org/10.1090/S0002-9939-08-09774-8
- Published electronically: December 29, 2008
- PDF | Request permission
Abstract:
Weighted analogues of de Leeuw’s restriction theorem for Fourier multipliers on $L^p(\mathbb {R}^n)$ are obtained. Weighted analogues of related extension theorems for multipliers on $L^p(\mathbb {T})$ are also considered.References
- Nakhlé Asmar, Earl Berkson, and Jean Bourgain, Restrictions from $\mathbf R^n$ to $\mathbf Z^n$ of weak type $(1,1)$ multipliers, Studia Math. 108 (1994), no. 3, 291–299. MR 1259281, DOI 10.4064/sm-108-3-291-299
- Nakhlé Asmar, Earl Berkson, and T. A. Gillespie, Generalized de Leeuw theorems and extension theorems for weak type multipliers, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) Lecture Notes in Pure and Appl. Math., vol. 175, Dekker, New York, 1996, pp. 41–67. MR 1358143
- Earl Berkson and T. A. Gillespie, On restrictions of multipliers in weighted settings, Indiana Univ. Math. J. 52 (2003), no. 4, 927–961. MR 2001939, DOI 10.1512/iumj.2003.52.2368
- Earl Berkson, Maciej Paluszyński, and Guido Weiss, Transference couples and their applications to convolution operators and maximal operators, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) Lecture Notes in Pure and Appl. Math., vol. 175, Dekker, New York, 1996, pp. 69–84. MR 1358144
- Daning Chen and Dashan Fan, Multiplier transformations on $H^p$ spaces, Studia Math. 131 (1998), no. 2, 189–204. MR 1636356
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621
- R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90, Springer-Verlag, Berlin-New York, 1977. MR 0618663, DOI 10.1007/978-3-642-66366-6
- Alessandro Figà-Talamanca and Garth I. Gaudry, Multipliers of $L^{p}$ which vanish at infinity, J. Functional Analysis 7 (1971), 475–486. MR 0276689, DOI 10.1016/0022-1236(71)90029-2
- Max Jodeit Jr., Restrictions and extensions of Fourier multipliers, Studia Math. 34 (1970), 215–226. MR 262771, DOI 10.4064/sm-34-2-215-226
- P. Mohanty and S. Madan, Summability kernels for $L^p$ multipliers, J. Fourier Anal. Appl. 9 (2003), no. 2, 127–140. MR 1964304, DOI 10.1007/s00041-003-0007-z
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, $L^{2}$ multipliers with power weights, Adv. in Math. 49 (1983), no. 2, 170–216. MR 714588, DOI 10.1016/0001-8708(83)90072-5
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- Kenneth F. Andersen
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
- Email: Ken.Andersen@ualberta.ca
- Parasar Mohanty
- Affiliation: Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, U.P. 208016, India
- Email: parasar@iitk.ac.in
- Received by editor(s): March 3, 2008
- Published electronically: December 29, 2008
- Additional Notes: This research was supported in part by the University of Alberta Faculty of Science Research Allowance
- Communicated by: Hart F. Smith
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 1689-1697
- MSC (2000): Primary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-08-09774-8
- MathSciNet review: 2470827