On the topology of manifolds with positive isotropic curvature
HTML articles powered by AMS MathViewer
- by Siddartha Gadgil and Harish Seshadri
- Proc. Amer. Math. Soc. 137 (2009), 1807-1811
- DOI: https://doi.org/10.1090/S0002-9939-08-09799-2
- Published electronically: December 23, 2008
- PDF | Request permission
Abstract:
We show that a closed orientable Riemannian $n$-manifold, $n \ge 5$, with positive isotropic curvature and free fundamental group is homeomorphic to the connected sum of copies of $S^{n-1}\times S^1$.References
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- Ailana M. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345–354. MR 1999925, DOI 10.4007/annals.2003.158.345
- Ailana Fraser and Jon Wolfson, The fundamental group of manifolds of positive isotropic curvature and surface groups, Duke Math. J. 133 (2006), no. 2, 325–334. MR 2225695, DOI 10.1215/S0012-7094-06-13325-2
- M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) Progr. Math., vol. 132, Birkhäuser Boston, Boston, MA, 1996, pp. 1–213. MR 1389019, DOI 10.1007/s10107-010-0354-x
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI 10.1007/BF02565622
- M. Kreck and W. Lück, Topological rigidity for non-aspherical manifolds, to appear in Quarterly Journal of Pure and Applied Mathematics.
- Mario J. Micallef and McKenzie Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649–672. MR 1253619, DOI 10.1215/S0012-7094-93-07224-9
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- J. H. C. Whitehead, On simply connected, $4$-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48–92. MR 29171, DOI 10.1007/BF02568048
Bibliographic Information
- Siddartha Gadgil
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore-560012, India
- Email: gadgil@math.iisc.ernet.in
- Harish Seshadri
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore-560012, India
- MR Author ID: 712201
- Email: harish@math.iisc.ernet.in
- Received by editor(s): July 29, 2008
- Published electronically: December 23, 2008
- Communicated by: Jon G. Wolfson
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1807-1811
- MSC (2000): Primary 53C21
- DOI: https://doi.org/10.1090/S0002-9939-08-09799-2
- MathSciNet review: 2470841