Interlacing and nonorthogonality of spectral polynomials for the Lamé operator
HTML articles powered by AMS MathViewer
- by A. Bourget, T. McMillen and A. Vargas
- Proc. Amer. Math. Soc. 137 (2009), 1699-1710
- DOI: https://doi.org/10.1090/S0002-9939-08-09811-0
- Published electronically: December 12, 2008
- PDF | Request permission
Abstract:
Polynomial solutions to the Heine-Stieltjes equation, the Stieltjes polynomials, and the associated Van Vleck polynomials have been studied since the 1830’s in various contexts including the solution of the Laplace equation on an ellipsoid. Recently there has been renewed interest in the distribution of the zeros of Van Vleck polynomials as the degree of the corresponding Stieltjes polynomials increases. In this paper we show that the zeros of Van Vleck polynomials corresponding to Stieltjes polynomials of successive degrees interlace. We also show that the spectral polynomials formed from the Van Vleck zeros are not orthogonal with respect to any measure. This furnishes a counterexample, coming from a second order differential equation, to the converse of the well-known theorem that the zeros of orthogonal polynomials interlace.References
- A. Agnew and A. Bourget. Semi-classical density of states for the quantum asymmetric top, J. Phys. A: Math. Theor., 41(18), 2008.
- J. Borcea and B. Shapiro. Root asymptotics of spectral polynomials for the Lamé operator, Commun. Math. Phys., 282:323–337, 2008.
- M.P. Grosset and A.P. Veselov. Lamé equation, quantum top and elliptic Bernoulli polynomials, Proc. Edinburgh Math. Soc., 51:635–650, 2008.
- E. Heine, Handbuch der Kugelfunctionen. Theorie und Anwendungen. Band I, II, Thesaurus Mathematicae, No. 1, Physica-Verlag, Würzburg, 1961 (German). Zweite umgearbeitete und vermehrte Auflage. MR 0204726
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- Robert S. Maier, Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1115–1153. MR 2377687, DOI 10.1098/rsta.2007.2063
- Morris Marden, On Stieltjes polynomials, Trans. Amer. Math. Soc. 33 (1931), no. 4, 934–944. MR 1501624, DOI 10.1090/S0002-9947-1931-1501624-1
- T. McMillen, A. Bourget, and A. Agnew. On the zeros of complex Van Vleck polynomials. J. Comput. Appl. Math., 223(2):862–871, 2009.
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213
- G. Pólya. Sur un théorème de Stieltjes. C.R. Acad. Sci. Paris, 155:36–60, 1912.
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- G. M. Shah, On the zeros of Van Vleck polynomials, Proc. Amer. Math. Soc. 19 (1968), 1421–1426. MR 230954, DOI 10.1090/S0002-9939-1968-0230954-X
- T. J. Stieltjes, Sur certains polynômes, Acta Math. 6 (1885), no. 1, 321–326 (French). Qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lamé. MR 1554669, DOI 10.1007/BF02400421
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- E. B. van Vleck, On the polynomials of Stieltjes, Bull. Amer. Math. Soc. 4 (1898), no. 9, 426–438. MR 1557633, DOI 10.1090/S0002-9904-1898-00531-1
- Hans Volkmer, Four remarks on eigenvalues of Lamé’s equation, Anal. Appl. (Singap.) 2 (2004), no. 2, 161–175. MR 2053588, DOI 10.1142/S0219530504000023
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- A. Bourget
- Affiliation: Department of Mathematics, California State University at Fullerton, Fullerton, California 92834
- Email: abourget@fullerton.edu
- T. McMillen
- Affiliation: Department of Mathematics, California State University at Fullerton, Fullerton, California 92834
- Email: tmcmillen@fullerton.edu
- A. Vargas
- Affiliation: Department of Mathematics, California State University at Fullerton, Fullerton, California 92834
- Email: tvargas@csu.fullerton.edu
- Received by editor(s): March 6, 2008
- Published electronically: December 12, 2008
- Communicated by: Andreas Seeger
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 137 (2009), 1699-1710
- MSC (2000): Primary 34L05, 34B30
- DOI: https://doi.org/10.1090/S0002-9939-08-09811-0
- MathSciNet review: 2470828