On injectivity of quasiregular mappings
HTML articles powered by AMS MathViewer
- by Tadeusz Iwaniec, Leonid V. Kovalev and Jani Onninen
- Proc. Amer. Math. Soc. 137 (2009), 1783-1791
- DOI: https://doi.org/10.1090/S0002-9939-08-09820-1
- Published electronically: December 23, 2008
- PDF | Request permission
Abstract:
We give sufficient conditions for a planar quasiregular mapping to be injective in terms of the range of the differential matrix.References
- G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 567–589. MR 1205884
- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. MR 1503516, DOI 10.2307/2007212
- Kari Astala, Distortion of area and dimension under quasiconformal mappings in the plane, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 24, 11958–11959. MR 1251715, DOI 10.1073/pnas.90.24.11958
- K. Astala, T. Iwaniec, and G. J. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, to appear.
- Ivar Bendixson, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), no. 1, 1–88 (French). MR 1554923, DOI 10.1007/BF02403068
- L.E.J. Brouwer, On continuous vector distributions on surfaces. II, Verhand. K. Ned. Akad. Wet. Afd. Nat. I. Reeks 12 (1910), 716–734. Available from http://www.digitallibrary.nl/proceedings/.
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Bernd Kirchheim, Stefan Müller, and Vladimír Šverák, Studying nonlinear pde by geometry in matrix space, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, pp. 347–395. MR 2008346
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- O. Martio and J. Väisälä, Elliptic equations and maps of bounded length distortion, Math. Ann. 282 (1988), no. 3, 423–443. MR 967022, DOI 10.1007/BF01460043
- Ruth Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc. 84 (1982), no. 1, 35–43. MR 633273, DOI 10.1090/S0002-9939-1982-0633273-X
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876
Bibliographic Information
- Tadeusz Iwaniec
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- Email: tiwaniec@syr.edu
- Leonid V. Kovalev
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- MR Author ID: 641917
- Email: lvkovale@syr.edu
- Jani Onninen
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- MR Author ID: 679509
- Email: jkonnine@syr.edu
- Received by editor(s): July 21, 2008
- Published electronically: December 23, 2008
- Additional Notes: The first author was supported by the NSF grant DMS-0800416.
The second author was supported by the NSF grant DMS-0700549.
The third author was supported by the NSF grant DMS-0701059. - Communicated by: Mario Bonk
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 1783-1791
- MSC (2000): Primary 30C62; Secondary 37C10, 30D20
- DOI: https://doi.org/10.1090/S0002-9939-08-09820-1
- MathSciNet review: 2470838